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1 Introduction

Textbook tasks abound in the mathematics classroom. Often, mathematics teachers are faced with
the difficult choice of which tasks to assign to students. Exercises focus on important skills that
students must master, while problems are designed to be more conceptual in nature or to hone
necessary reasoning and problem-solving practices. Moreover, problem-solving in mathematics
involves students “engaging in a task for which the solution method is not known in advance”
(NCTM 2000, p. 52). Mindful teachers struggle to find the appropriate balance of exercises and
problems for their students. A rich mathematics problem is one that has “a range of characteris-
tics that together offer different opportunities to meet the different needs of learners at different
times” (Piggot 2011, par. 2). The purpose of this manuscript is to suggest characteristics of rich
mathematical problems and to assist teachers in making mathematics exercises richer for their
students.

2 Characteristics of Rich Problems

Rich problems have been characterized in several sources, such as in the Secondary National Strategy
for School Improvement (National Department for Education 2014). While not an exhaustive list,
the following are indicators of rich problems; that is tasks that can meet the needs of different
learners at different times.

1. Mathematically Engaging
2. Extendable
3. Multiple Entry Points
4. Make Connections
5. Appropriate Use of Tools
6. Multiple Ways of Thinking
7. Problem Solving Heuristics

8. Justification
9. Non-Intuitive and Surprising

10. Encourage Creativity and Originality
11. Communication
12. Develop Confidence and Increase Self-

Efficacy

We describe these indicators in more detail in the following paragraphs.
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1. Rich problems are mathematically engaging That is, they spark student interest in mathe-
matics. Often this refers to problems that relate to students’ interests or intrigue students in some
way.

2. Rich problems are extendable. This means that either the problem itself or its method of
solution can be generalized to other situations. Problems like this are instructive and allow students
to develop a catalogue of tools through which they can solve future problems.

3. Rich problems lend themselves to multiple entry points. That is, there are several ways in
which a student can attempt a solution. Often, trying an approach or strategy will lead to a spark of
ingenuity—an “aha moment”—which can allow students to proceed.

4. Rich problems allow students to make connections. That is, they allow students to see connec-
tions within mathematical topics, across the mathematics discipline, and to the real world.

5. Rich problems allow students to make appropriate use of tools, including technology. Tech-
nology can be useful for not only understanding problems, but to make problems more accessible
to younger learners.

6. Rich problems engage students in multiple ways of thinking. Sometimes, problems can be
solved using strategies that are promoted in the primary grades, but often discouraged thereafter.
For example, the “guess and test” strategy can often lead students into thinking about a problem in
a different way.

7. Rich problems require the use of problem-solving heuristics. This means that, although a
solution method is not immediately apparent, it is within the realm of the students experiences to
develop one or use a previously learned strategy.

8. Rich problems allow for justification. Part of the joy of doing mathematics is to be able to
answer the question “why?” Asking for justification can solidify and confirm students’ solutions.

9. Rich problems are often non-intuitive and surprising. These type of problems can generate
student engagement in mathematics and can serve to foster student investment in problem-solving.

10. Rich problems encourage creativity and originality. After all, the method of solution to
such problems is not immediately apparent. So, the struggle to develop appropriate strategies is an
important metacognitive process. Teachers should be cognizant that student learning happens as
part of that struggle.

11. Rich problems offer students the opportunity to communicate effectively. This will allow
students to regard answering mathematics problems as a procedure, rather than an end. A solution
itself may do very little to convince someone as to its correctness. The way a solution is presented;
therefore, can provide a convincing argument to a solution’s validity.

12. Rich problems allow for students to develop confidence and increase self-efficacy. Being
able to justify a solution not only increases a student’s understanding of the content, but can in-
crease his or her confidence and self-efficacy about mathematics problem-solving. This affective
aspect of problem-solving is often overlooked. When students succeed mathematically, they begin
to believe in their own mathematical abilities, making them better problem solvers.
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3 Making Mathematics Problems Richer

While authors of some problems might expect specific numerical answers, other authors might
desire more open-ended solutions or allow for multiple interpretations. Mathematics teachers
should not only pay attention to the content of a problem, but also to its effect on the metacognitive
aspects of learners while problem-solving. I’ve found the following strategies helpful for making
the tasks I assign to students mathematically richer. The strategies listed either deal with how
problems are written (creation) or how they are enacted (implementation), or both.

1. Take advantage of surprising student solutions (implementation).
2. Remove information from a problem (creation).
3. Change the context of a problem (creation).
4. Break a pattern (creation).
5. Ask for justification (creation/implementation).
6. Allow for the use of multiple tools (creation/implementation).

3.1 The Consecutive Integers task

For instance, consider the following problem:

Consecutive integers task

The sum of six consecutive integers is 447. What are the integers?

A typical student solution by Elena, a high school Junior, is offered in Figure 1.

Fig. 1: Typical student solution to the consecutive integers task.

Another student J.T. uncovered a “surprise” solution by averaging the six integers (see Figure 2).

Fig. 2: Surprise student solution to the consecutive integers task.

The reader might reflect how often a student presents a surprising, perhaps unintended, solution.
Rather than viewing these solutions as anomalies, these are perhaps better seen as opportunities
to promote classroom discourse and to uncover student-centered problem-solving strategies. This
brings us to the first suggestion for making a mathematics problem richer.

1. Take advantage of surprising student solutions. Rather than viewing surprising solutions
as divergent anomalies, consider them as a tool for encouraging student discourse, after students
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have solved a problem. Student-created strategies are often more intuitive or inventive than teacher-
directed strategies and promote metacognitive aspects of problem-solving. Strongly related to a
students method of solution is his or her self-efficacy while problem-solving (Waters 2003). Student-
created strategies; therefore, can improve confidence and allow students to engage in beneficial
discourse while discussing solutions.

A second suggestion for making a mathematics problem richer is:

2. Remove information from a problem. Frequently, removing information from a problem
makes it more open-ended and subject to different—though equivalent—methods of solution
and/or multiple correct answers. Open-ended problems are problems that are “formulated to have
multiple correct answers” (Becker and Shimada 1997, p. 1). Student responses to such problems can
indicate higher-order thinking and reveal students’ abilities to synthesize and apply knowledge to
new situations.

3.2 The Swimming Pool task

Consider the following problem:

Swimming Pool task

Suppose you have a rectangular pool of length 25 feet and width 15 feet and you want to
build a border around it with 1 foot by 1 foot square tiles. How many tiles will you need?

Removing some information from this problem yields a much richer experience for students:

Swimming Pool task

Suppose you have a rectangular pool of length m feet and width n feet, where m and n are
integers, and you want to build a border around it with 1 foot by 1 foot square tiles.

How many tiles will you need? (NCTM 2000, p. 68)

Note that the number of tiles in the border may be expressed as

2m+ 2n+ 4, 2(m+ 2) + 2n, 2m+ 2(n+ 2), 2(m+ n+ 2),

or other different—though equivalent— answers. This type of problem can lead to classroom
discourse about multiple equivalent symbolic representations that describe the same phenomenon
and reveal insight into students’ ways of thinking about a problem. Another suggestion for making
a problem richer is:
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3. Change the context of a problem. Changing the context of a problem can not only make it
more engaging for students, but can even suggest alternate strategies.

3.3 The Integer Sum task

Consider the following problem:

Integer Sum task

Find the sum of the first 30 positive integers. Find a formula for the sum of the first n positive
integers.

The reader might recognize this problem as another classic that appears in many textbooks for
future teachers of mathematics. This problem can be given in a different context. For instance,
consider changing the problem to the following.

The Handshake Problem

There are 31 people at a party. If each person shakes hands with each other party-goer exactly
once, how many handshakes will there be? Generalize your solution.

This change of context might suggest a more active approach to solving the problem. It might
suggest strategies such as “act it out” or “solve a simpler problem,” often overlooked strategies
by novice (and expert!) problem-solvers. Such problems also allow students entry points into a
problem that might look, at first, difficult to approach.

One possible solution might involve creating a table representing a simpler problem in order
to recognize a pattern and generalize (see Table 1). The pattern might be recognized by noting

Table 1: Handshake Problem data for various numbers of people.
People 2 3 4 5 6 7 8 9 10 . . . 31
Handshakes 1 3 6 10 15 21 28 36 45 . . . ?

that, if there are n people at a party and another party-goer joins, then n additional handshakes
are necessary. So, for 31 people at a party, there are 1 + 2 + 3 + . . . + 30 total handshakes. The
sum can either be computed directly or by recalling the formula (attributed to Gauss) for the sum
of the first n positive integers: 1 + 2 + 3 + . . . + n = n(n+1)

2 . In the case of the above problem,
1 + 2 + 3 + . . .+ 30 = 30×31

2 = 465. The reader might also notice that the number of handshakes for
n people may be represented as diagonals of a regular n−gon, with vertices representing distinct
people and diagonals representing handshakes between them. Moreover, the number of handshakes
in Table 1 forms a sequence of triangular numbers; the general solution to which may be found
geometrically.

Another suggestion for making a problem richer is:

4. Break a pattern. Some of the most enjoyable and intriguing problems are those that seem-
ingly break a pattern or whose solutions hold for some, but not all cases.
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3.4 The Prime Number Function task

Consider the following problem:

Prime Number Function task

True or False: The formula p(n) = n2 + n+ 17 yields a prime for all whole numbers n?

One high school student offered the following clever solution:

p(17) = 172 + 17 + 17,which is obviously divisible by 17. So, no.

To make the problem more rich, add the phrase: If not, find the smallest whole number n for which p(n)
is not prime.

This changes the problem dramatically and induces students to check primality for small whole num-
bers. In this case, p(n) is prime for n = 0, 1, 2, . . . , 15, but fails when n = 16: p(16) = 162 + 16+ 17 =
16(16 + 1) + 17 = 16 · 17 + 17 = 17(16 + 1) = 172 = 289. So, careful choices and wording of such
problems can reinforce problem-solving habits of mind by encouraging perseverance and attention
to precision while solving problems, key standards for mathematical practice (CCSSI 2010, p. 6).
The next suggestion for making a problem better is:

5. Ask for justification. One of the most important questions a teacher can ask his or her
students is, “Why?” This question often leads students to use and translate among mathematical
representations and to communicate mathematically.

The following geometry problem is typical of many in that students often can get an answer
without being able to justify it.

3.5 The Equilateral Triangles task

Consider the following task:

The Equilateral Triangles task

4ABC and4CDE are equilateral with side length 1.

What is the length of segment AD.

Consider adding the sentence: Justify your answer.

This seemingly simple addition can change the nature of the problem and require expectations of
reasoning and proof. One solution offered by Luke is illustrated in Figure 3.
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Fig. 3: A solution to the Equilateral Triangles task.

Knowing the triangles are equilateral, we can use AD as an altitude through BC in 4ABC.
Since 4ABF is a 30◦ − 60◦ − 90◦ right triangle, we know AF =

√
3
2 and BF = FC = 1

2 .
Since 4FCD is a right triangle and CD = 1, the Pythagorean Theorem gives FD =

√
3
2 . So,

AD = AF + FD =
√
3
2 +

√
3
2 =

√
3. Another suggestion involves the approach to problem-solving

with available tools:

6. Allow for the use of multiple tools, especially technology. The author discovered a set of
coordinate geometry problems (source unknown) which included the following gem:

Coordinate Geometry task

The triangle4ABC is isosceles. B is (−2,−1) and C is (1,−4). If the y-coordinate of A is 1,
what is the x-coordinate?

A typical (incomplete) student paper-and-pencil solution is provided in Figure 4.

Fig. 4: A hand-drawn solution of the coordinate geometry problem.

Assuming A has coordinates (x, 1), the Distance Formula with AB = AC gives
√
(x− (−2))2 + (1− (−1))2 =√

(x− 1)2 + (1− (−4))2, which yields the quadratic equation x2 + 4x+ 4 + 4 = x2 − 2x+ 1 + 25.
Collecting like terms and solving gives 6x = 18 or x = 3.

With the availability of dynamic geometry software, Bob, another student in the class, chose
to approach the problem with a different entry point using dynamic geometry software and offered
the following solution:
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Sketch the points B and C, and affix point A to the line y = 1, thus fixing the y-coordinate
of A to be 1. Sliding point A along the line illustrates several possible solutions, indicat-
ing that the triangle could be isosceles in three different ways, as shown in my following
sketch.

These solutions may be found by considering three possibilities: AB = AC, AC = BC,
and AB = BC where A has coordinates (x, 1). Note my above sketch indicates one
solution if AB = AC, no solution if AC = BC, and two solutions if AB = BC.

If AB = AC, the single solution given above yields x = 3. If AC = BC, the Dis-
tance Formula yields the quadratic equation x2 − 2x + 8 = 0. A quick check of the
discriminant, b2−4ac = (−2)2−4(1)(8) = −28, means the equation has no real solutions.
One might also notice that BC is approximately 4.24 units and the distance from C to
the line y = 1 is 5 units, greater than BC, so no real solution is possible. If AB = BC, the
Distance Formula yields the quadratic x2 + 4x− 10 = 0. Using the Quadratic Formula,
x = −4±

√
56

2 , giving approximate values x = 1.74 or x = −5.74.

Although the wording of the problem implies a single solution, use of dynamic geometry allows
students to see multiple correct solutions, leading to a more complete answer.

4 Reflections

Thoughtful teachers pay careful attention to the tasks they assign and are intentional about their
problem-solving expectations. Understanding what makes a problem rich assists teachers in
wording exercises and examining student solutions to highlight multiple strategies. Rather than
searching for—or creating their own—problems, teachers can use these suggestions to transform
routine exercises found in many textbooks into rich problems having characteristics that encourage
appropriate problem-solving practices and promote classroom discourse about problem-solving.
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