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Abstract: The authors describe the application of a math trail activity used in a college classroom of
future mathematics teachers to model with mathematics. In this activity, pre-service teachers select a
location in their community, discover and design five trail heads, model situations using mathematical
strategies learned in class, and share in a write-up or presentation. Insights about facilitating a math trail
for mathematical modeling are provided, along with suggestions for teachers interested in using math
trails in other contexts.
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1 Introduction

Throughout the math trail, I think my group came to the realization ... that math can be found
anywhere. If you're walking to your neighbor’s house, or if you're taking a touristic trip in
downtown Los Angeles, math can be found anywhere and everywhere. —Future teacher of
mathematics reflecting on a math trail.

Modeling with mathematics plays a large role in solving real-world problems—it allows people to
engineer roads, predict cancer growth, and improve weather forecasting. The Common Core State
Standards in mathematics (CCSSM) emphasize modeling as an important standard for mathematical
practice (SMP) (NGA Center & CCSSO, 2010) (see Table 1). Yet it is not always clear how to teach
mathematical modeling to students (e.g., Felton-Koestler, 2016). What practical mathematical
activities might engage young mathematicians in modeling with mathematics? In this article, we
describe how math trails can be used to engage K-12 students and future teachers, alike, in modeling
the world around them.

Table 1: SMP 4—Modeling with Mathematics (NGA Center & CCSSO, 2010)

Modeling with mathematics (SMP 4) involves a student using mathematics to solve a
real problem. Engaging in modeling may involve the following activities:

Pose a question of interest about everyday life, society or the workplace.

Make assumptions and approximations to simplify a complicated situation.

Identify important quantities and relationships in real situations.

Use tools such as diagrams, two-way tables, graphs, flowcharts, and formulas to

map relationships.

e Interpret and analyze mathematical relationships within the context to draw
conclusions.

e Make predictions that help to answer a question.

e Revise original plans after making sense of initial trials.
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In Guidelines for Assessment and Instruction in Mathematical Modeling Education (GAIMME), Garfunkel
and Montgomery (2016) describe mathematical modeling as “a process that uses mathematics to
represent, analyze, make predictions or otherwise provide insight into real-world phenomena”
(p- 8) (see Figure 1). The process includes a number of steps: (a) identifying a problem to better
know or understand; (b) making assumptions and identifying variables to obtain an idealized
version of the original question; (c) doing math, including computations and problem solving
around the idealized question; (d) analyzing and assessing the solution, including whether results
from translating back to original problem are practical, reasonable, and acceptable; and, finally, (e)
iterating to refine and extend the model.
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essential solution
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Identify &
specify
problem to
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Iterate as
needed to Analyze &
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extend and solutions
model

Implement
model &
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Fig. 1: Defining mathematical modeling as a back-and-forth process in GAIMME (2016).

We recognize that modeling takes on different meanings across different contexts. In particular, the
word modeling is used in several different ways in mathematics standards. For instance, Felton-
Koestler (2016) describes three ways the CCSSM uses model and modeling. One meaning includes
representing mathematics using diagrams or physical objects meant to represent mathematical
operations or concepts. This includes using concrete models or drawings to add and subtract
within 1000 (2.NBT.B.7). A second meaning is as a “stepping stone problem” to “solve relatively
straightforward and easy-to-imagine contexts” (Felton-Koestler, 2016, p. 269). An example might
include using visual fraction models or equations to solve a word problem (5.NEB.7). A third
view is “using mathematics to solve or understand a messy, ill-defined, real-world problem or
phenomenon,” which Felton-Koestler refers to as mathematical modeling (p. 269). The math trails
we present make use of both mathematical modeling and modeling/representing mathematics.

2 Procedure for a Math Trail

A math trail is an activity that encourages students to explore their environment to discover and
notice mathematics around them (Shoaf, Pollak, & Schneider, 2004). Shoaf and her colleagues
describe math trails as cooperative instead of competitive, self-directed, voluntary, opportunistic,
temporary, and for everyone. Engaging in a math trail involves selecting a physical location and
creating problems from the observed environment. Problems may be selected ahead of time by the
teacher or discovered during the math trail by students. Skortell (2016) identifies goals of a math
trail to include:
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o To help students value mathematics by giving them an opportunity to discover its applications
in the real world.

e To improve students’ critical thinking by giving them an opportunity to create and solve their
own problems.

e To improve students” abilities to communicate mathematical ideas.

e To improve students’ abilities to collaborate on mathematical tasks.

o To develop students’ interest in and respect for the community in which they live.

Teachers can support students in strengthening their mathematical modeling abilities through math
trails since the trails encourage students to problem pose questions of interest, make connections
among different mathematical ideas, and engage in problem solving. To implement math trails in a
college math course for future teachers, we invited students to work in small groups of three to four
for a math trail class project. While math trails can be implemented in a variety of ways, preservice
teachers in our context were provided with one class to walk around campus to discover five math
trails. See Table 2 for directions given to students.

Table 2: Directions for pre-service teachers on how to engage in a math trail.

1. Assign roles. Decide who will be the manager, the photographer, note-taker,
and/or the creative facilitator.

2. Pick a specific location. This could be your campus, a playground, a shopping
plaza, a cultural center, a theme park, etc. Your group will visit and search for
mathematics in their surroundings. Students are encouraged to think about
locations where all group members can meet.

3. Observe your surroundings. Notice movement, shapes, structure, quantities, and
whatever else that can be described mathematically. Ask questions like, “Can you
find a way to estimate the number of tiles in this mosaic?” Aim to find five trail
heads, where a trail head is defined as a place on your Math Trail where you
stopped and engaged in mathematics.

4. Identify relevant mathematics content. Involve the specific material we have
discussed in our math class. Challenge yourself to think creatively and to see
mathematics hidden in everyday situations. Consider creating your own
non-standard unit to measure something (e.g., your shoe length, length of your
hand, height). Topics must be connected to ideas discussed in our class (e.g.,
problem solving, using mental math, fraction reasoning, or integers).

5. Collect data for each trail head. Make sure to take detailed notes of your
observations and the following information:

¢ A motivating question. One question might be: “How many square units are
in the pavement if we use someone’s foot as a non-standard unit?”

e A picture of the situation. Take a photograph to communicate the nature of
the trail head.

e A diagram of the situation. This may be a hand-drawn or computer-created
diagram. Other diagrams include number lines, double number lines,
rectangular area models, etc.

e Written mathematics symbolizing your situation. Be sure to connect it to the
content learned in class.

6. Summarize. Work collaboratively to create a presentation and individually to
create a summarizing report.
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The following math trail was co-created by an undergraduate future teacher and her instruc-
tor after the completion of a mathematics content course for future teachers that used math trails.
While others have described how math trails can be designed and implemented (e.g., English,
Humble, & Barnes, 2010; Richardson, 2004) and provided detailed examples (e.g., Amiya & Kinch,
2014; Shoaf, Pollak, & Schneider, 2004; Skortell, 2016), we suggest how math trails can provide an
opportunity to engage students in mathematical modeling. To do so, we highlight two trailheads
on our campus. The first example targets the proportional reasoning, which supports a sixth grade
math standard on understanding ratio concepts and using them to solve problems (6.RP.A.1-3,
7.RP.A.1-3). The second example targets algebraic reasoning, which supports sixth grade math
standards on expressions and equations, particularly on representing and analyzing quantitative
relationships between dependent and independent variables (6.EE.C.9, 7.EE.B.4).

3 Planet Walk Trailhead

The Planet Walk is a walkway on campus that contains a scale model of the solar system. Planets
are placed in a straight line relative to their actual distance from the sun. Along the approximately
500-foot walkway, a podium is placed in front of each planet, providing information about each (see
Figure 2). We were curious to know more about the scale used in the construction of the display. In
particular, The Planet Walk motivated us to wonder: How accurate are the scaled distances of the model
compared to actual distances of planets to the sun?

Fig. 2: A picture of the first three planets and the sun on The Planet Walk.

To determine the scale factor of The Planet Walk, we measured each planet’s distance from the sun
using a non-standard unit of measure called Sarah Units (SU), the length of one of the co-author’s
feet. We then found the actual distance on the internet and used proportional reasoning to compare
the model distances to actual distances. We created a number line diagram relating the number of
Sarah Units to each planet’s distance to the sun (see Figure 3).
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Fig. 3: Number line diagram for each planet’s model distance from the sun in Sarah Units, the length of one
of the co-author’s feet.

We found Mercury’s distance from the sun to be 6.66 Sarah Units. The actual distance between
Mercury and the sun was determined to be approximately 35.98 million miles. We determined a
scale factor by dividing the actual distance between Mercury and the sun by the model’s distance in
SU. We found the actual distance to be approximately 5.4 million times the model distance. This
means that each step Sarah took in the model was equivalent to traveling 5.4 million miles in space.
We could also say that the ratio 6.66 SU : 35.98 million miles exists, which could be simplified to 1
SU : 5.4 million miles.

We continued the process of finding ratios of each pair of model and actual distances to test
for equivalent ratios (7.RP.A.2.A) (see Table 3). Sometimes we swapped who measured the dis-
tances, as we noticed that both co-authors’ shoe sizes were approximately equal in length. We
made additional approximations by estimating distances from previous measurements (rather than
starting anew each time from the sun) to make the data collection process more efficient.

Table 3: Planet and model distances.

Trial 1 Trial 2

Planet Distance Model Dis- Scale Factor Model Dis- Scale Factor

from Sun tance from tance from

(millions of Sun (Sarah Sun (Sarah

miles) Units) Units)
Mercury 35.98 62/3 5,397,053.97 61/2 5,535,384.62
Venus 67.24 101/2 6,403,809.52 91/4 7,269,189.19
Earth 92.96 151/2 5997,419.35 131/6 7,060,074.43
Mars 141.6 23 6,156,521.74 21 6,742,857.14
Jupiter  483.8 75 6,477,333.33 741/2 6,520,805.37
Saturn  888.2 1351/3 6,563,055.80 137 1/2 6,459,636.36
Uranus 1,787 276 2/3 6,459,037.70 278 1/2 6,416,517.06
Neptune 2,795 434 6,440,092.17 437 1/4 6,392,224.13

After determining the scale factors for model/actual distances to the sun, we wondered if each pair
of distances shared the same constant of proportionality (7.RP.A.2.B). We discovered that not all
pairs shared the same ratio. Scales varied from 5.3 million miles/1 SU to 6.5 million miles/1 SU.
We reflected on why the scale factors varied if the Planet Walkway was likely designed using the
same single scale factor. Doing so provided us an opportunity to analyze and assess our data, and
consequently refine our process.
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We decided to recollect our distance data to ensure greater precision and to strengthen our con-
clusions. During Trial 2, we systematically marked benchmark numbers with chalk to keep track
of distances and measured lengths in as straight of a line as possible. We also ensured that each
SU was measured heel-to-toe in an effort to minimize measurement error and decided to use only
Sarah’s foot length for consistency. Finally, we decided to measure from the location of the model
sun to the front of the approximately 3-inch long planet posts, as opposed to its center or far
end. We hypothesized that these revisions would provide more accurate data from which to draw
conclusions.

Table 4 displays how scale factors compared in each trial. Notice that the average scale factor
for all combinations of sun-to-planet measurements was lower in Trial 1 than in Trial 2. The scale
factors had a range of 1,200,000 in Trial 1 and 1,700,000 in Trial 2. This was interesting as we
hypothesized that the range would be smaller with more accurate data collection techniques. The
medians differed by an additional 25,000 miles for Trial 2. Reasons for variation include our im-
precise measuring method, using multiple non-standard units (both Sarah and Bridget Units), the
issue of consistently measuring from the end point of each length and its post, and counting errors.
Alternatively, variation may also be explained by the design of the Planet Walk. We concluded that
there may have been some inconsistency with the scale factor used to build the model system, but
recognized our own imperfections in the mathematical modeling process.

Table 4: Scale factor statistics across two trials.

Trial 1 Trial 2
Average scale factor 6,236,790.4475 6,549,586.0375
Range of scale factor 5,300,000 — 6,500,000 5,500,000 - 7,200,000
Median scale factor 6,460,000 6,485,000

3.1 Mathematical Modeling

Reflecting on our process, we engaged in mathematical modeling using proportional reasoning in
several ways:

e We identified a problem regarding the accuracy and proportionality of our solar system
represented on the sidewalk.

e We defined a non-standard unit of measure, the Sarah Unit, to measure distances and made
measurement approximations along the way.

e We used tools, such as a number line diagram, tables organizing length measurements
and averages, ranges, and median, and calculators to represent mathematical relationships
between collected data points.

e We analyzed and assessed our model, questioning whether our scale factors made sense.
e We iterated our process twice, refining our data to better answer our problem.

Although modeling a scaled version of the solar system was specific to a particular location at our
school site, proportional thinking can be discussed in other situations. Students could compare rates
of climbing sets of stairs, walking speeds between several locations, and the steepness of different
architectural structures.
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4 Brick Border Design Trailhead

Walking around the art buildings on campus with sidewalk chalk, we noticed bricks on the ground
and wondered about growing patterns learned in class. We began to count the number of bricks in
the border of a square (see Figure 4). We imagined that it would be useful to collect data to find
a formula to predict how many bricks would be necessary in any sized square border (activity
inspired by Boaler, Humphreys & Ball, 2005).
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Fig. 4: The nth case of an n x n border task.

To find a way to count the number of bricks needed for a general border without counting one
by one, we decided to find the number of bricks in specific and simple cases: 3 x 3,4 x 4,5 x 5,
6 x 6, and 10 x 10 borders. We discovered three different expressions that count the number of
bricks given the size of the square, n, where n represented the length of one side (6.EE.B.9). Table 5
provides the three different expressions.

Table 5: Three different expressions for number of bricks in an n x n border problem.

Dimension | Expression 1: Expression 2: Expression 3:
n+2n—1)+(n—2) 2(n) +2(n — 2) 4n — 4

3x3 3+2B3-1)4+(3-2)=[23)+23-2) =23)+|43)—4=38
3+2(2)+1=38 2(1) =38

4 x4 4424-1)4+(4-2) =24 +24-2) =2(4) +|4(4) —-4=12
44+23)+2=12 2(2) =12

5x5 54+26-1)+(5-2)=|205)+25-2)=2(5)+|4(5)—-4=16
5+2(4)+3=16 2(3) =16

6 x 6 64+26-1)+(6—-2)=]2(6)+2(6—-2) =2(6)+|4(6)—4=20
6+2(5)+4=20 2(4) =20

10 x 10 10+2(10—1)+(10—2) = | 2(10) +2(10—2) = 2(10)+ | 4(10) —4 =36
10 +2(9) +8 =36 2(8) = 36

nxn n+2n—1)+(n—-2) 2(n) +2(n—2) dn — 4

The first expression we found was n + 2(n — 1) + (n — 2) (see Figure 5). We counted all bricks on
the left side of the border (n), the amount of bricks on the top and right sides of the border without
counting the bricks that we already counted (2 groups of n — 1), and the number of bricks that
remained on the bottom of the border (n — 2). We used variables to represent mathematics and
combined like terms to give us n + 2(n — 1) + (n — 2). While this simplifies to 4n — 4, we left it in
the form n + 2(n — 1) 4+ (n — 2) since this expression corresponded to the way we structured our
diagram.
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Fig. 5: The nth figure of an n x n border represented by the expression n + 2(n — 1) + (n — 2).

Another expression we discovered was 2(n) + 2(n — 2) (see Figure 6). To make sense of this expres-
sion, we first counted the amount of bricks on the top and bottom rows of the border. This gave us
2n, since both sections of bricks had n bricks. Next, we counted the number of vertical bricks on the
left and right side of the border without double-counting any squares. This gave us (n — 2) bricks
for both the left and right border, or 2(n — 2). We subtracted two from n because we had already
counted two bricks on the right and left side while counting the number of bricks in the top and
bottom rows of the border. Adding these terms gave us 2(n) + 2(n — 2), which also simplified to
4dn — 4.

0 ---00

Fig. 6: The nth figure of an n x n border represented by the expression 2n + 2(n — 2).

For the last expression 4n — 4, we counted the amount of bricks on all the sides, which gave us us
4n since there are 4 sides with n bricks in each side (see Figure 7). We then subtracted four bricks
from our expression because of the amount of bricks that overlapped in each corner.
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Fig. 7: The nth figure of an n x n border represented by the expression 4n — 4.
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4.1 Modeling with mathematics

We modeled with mathematics while engaging in algebraic reasoning in several ways:

e We used diagrams to represent the total number of bricks given any n x n border, and related
the set of abstract symbols to the quantities in the diagram.

e We described several expressions that could represent the way that the pattern grew and
connected each expression to a diagram: n +2(n — 1) + (n — 2), 2(n) + 2(n — 2), and 4n — 4.

e We answered a real question as to how many bricks or tiles would we need to design any
border, useful for designing and constructing patterns with tiles.

5 Using and Extending Math Trails

Engaging students in a math trail within the elementary, middle, or high school setting is a fea-
sible activity that could serve as a vehicle for learning mathematics topics and modeling. As the
GAIMME report states, “mathematical modeling should be taught at every stage of a student’s
mathematical education” in part because “mathematics is important in dealing with the rest of the
world” (GAIMME, 2016, p. 7). Teachers could find ways to use math trails as an introductory activ-
ity, formative in-class assessment, or summative project. For an introductory activity, teachers may
invite students to measure shadows around campus to introduce a discussion of ratios. Students
might be encouraged to estimate the height or weight of objects to begin conversations around
estimation.

As a formative assessment, teachers may pre-select an area for students to observe and design a
sequence of questions related to a topic. In the Watts Tower Math Trail (California Mathematics
Network Region XI Los Angeles County, 2016), one location focused on a building design involving
a mosaic of glass bottle bottoms arranged in a roughly semi-circular pattern. Several questions were
listed that could be asked to assess what students noticed about the math trail:

e An elementary question asked, “About how many circles do you see here? What makes them
circles?” (p. 7).

e A middle school question read, “Invent a method for counting the circles” and “Use your
method to count the circles.” (p. 7).

e A high school question stated, “At the right is the same picture as above, with a coordinate
system placed on it. Add scale, and determine an equation for the parabola formed” (p. 7).

As a summative assessment, students may be invited to product a report or presentation about their
unique math trail. In all situations, students have the opportunity to creatively connect mathematics
learned in class to real situations of interest in their communities. Whether students model using
mathematics or engage in the back-and-forth process of mathematical modeling, math trails provide
an opportunity for doing rich mathematics.

With curiosity, planning, and exploration, teachers can invite students to apply a mathemati-
cal lens to the world around them. Math trails are adaptable activities that provide opportunities to
see mathematics as a tool for making sense of the world, to communicate and collaborate mathe-
matically, to deepen understandings of the purpose of previously isolated mathematical topics, and
to connect students to their community.
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6 Concluding Remarks

Math trails create opportunities for students to connect mathematics content learned in a classroom
to the real world. This process involves both mathematical modeling as seen with the Planet Walk
example and modeling with mathematics as seen in the Brick Border Design example. One student
who engaged in Math Trails as part of their future teacher math course reflected,

This assignment helps you to think more abstractly. When we are teaching fractions or
something else to a class, we can use this experience and real life examples to help them
[students] relate to math more.

Another student reflected, “I have to admit that at first it wasn’t very easy because everywhere you
look there is mathematics involved.” The notion that mathematics could be found everywhere was
shared by many students who engage in a math trail. One student, who played softball for her
university, noted that,

I would have never thought to look at the trailheads that I did before this class. I do not
know if anyone has ever used any of the sport facilities on campus for a math trail, but I
find it very interesting how much math surrounds these areas.

The details of math trails presented here provide the reader with examples of engaging in modeling
around proportional reasoning and algebraic thinking. In the course of our math trail, we posed and
answered our own questions, made connections between mathematics and the real world, used tools
such as diagrams and proportional and algebraic thinking to problem solve, updated and revised
our methods of collecting data to improve accuracy, and collaborated to clearly communicate our
thinking. The activities of actualizing the size of our solar system and using models to design
patterns engage students in doing mathematics from the lens of modeling. For students, math
trails have the potential to shape the extent to which mathematics can be seen and created in their
environment. For teachers, engaging in math trails provides an informal assessment opportunity to
gauge levels of mathematical modeling and their understanding of mathematical topics, all while
connecting what is learned within a classroom to the world outside of it. Opportunities provided
through math trails can help to connect students and teachers to their local surroundings and, in
doing so, support the development of rich and meaningful mathematical modeling abilities.

7 Acknowledgements

The authors would like to thank Susan Nickerson for introducing the idea of math trails to them
and all students who have designed and shared their own math trails.

References

Amiya, T. & Kinch, D. (2014). Skirball Cultural Center Math Trails Guidebook [PDF file via personal
correspondence].

Boaler, J., Humphreys, C., & Ball, D. L. (2005). Connecting Mathematical Ideas: Middle School Video
Cases to Support Teaching and Learning. Portsmouth, NH: Heinemann.

California Mathematics Network Region XI Los Angeles County (2016). Watts Tower Math Trail [PDF
file via personal correspondence].

English, L. D., Humble, S., & Barnes, V. E. (2010). Trailblazers. Teaching Children Mathematics, 16(7),
402-409.

Page 52 Obhio Journal of School Mathematics 79



Garfunkel, S. and Montgomery, M. (2016). Guidelines for Assessment & Instruction in Mathematical
Modeling Education (GAIMME). Bedford, MA: COMAP.

Felton-Koestler, M. (2016). Common Core confusion about modeling. Teaching Children Mathematics,
23(5), 269-272.

National Governors Association Center for Best Practices & Council of Chief State School Officers
(NGA Center & CCSSO) (2010). Common core state standards for mathematics. Washington, DC:
Author. Retrieved from http://corestandards.org/assets/CCSSI_Math%?20Standards.pdf.

Richardson, K. M. (2004). Designing math trails for the elementary school. Teaching Children Mathe-
matics, 11(1), 8.

Shoaf, M., Pollak, H., & Schneider, J. (2004). Math Trails. Bedford, MA: COMAP. Retreived from
http:/ /www.comap.com/highschool/projects/mathtrails /MathTrails.pdf

Bridget K. Druken, bdruken@fullerton.edu, is an Assistant Profes-
sor in the Department of Mathematics at California State University—
Fullerton. She teaches mathematics content courses for future teach-
ers and supervises single-subject credential students as they work to-
wards becoming grades 7-12 mathematics teachers. Her interests in-
clude hiking, yoga, dogs, cats, photography, swimming, contra dancing,
and family.

Sarah Frazin, sefrazin@csu.fullerton.edu, is a recent graduate with a
Bachelor of Science degree in Child and Adolescent Development. She
is currently enrolled in the Combined Masters & Multiple Subject Teach-
ing Credential Program at California State University—Fullerton.

Ohio Journal of School Mathematics 79 Page 53


http://corestandards.org/assets/CCSSI _Math%20Standards.pdf
http://www.comap.com/highschool/projects/mathtrails/MathTrails.pdf
bdruken@fullerton.edu
sefrazin@csu.fullerton.edu

