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Abstract: The authors present three methods from different branches of mathematics to solve the same task.
Originally an algebraic problem, the first solution presented utilizes an algebraic method. Subsequently,
the authors translate the question into a geometric language and explore ways Pythagoras might phrase
and solve the problem. Lastly, they share geometric and trigonometric solutions dealing with a special
triangle whose angles are α, 2α, and 4α - a geometric progression. Solution of the same problem using
different methods deepens student mathematical understanding while promoting mathematics as a field
composed of intertwining branches.
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1 Introduction

In recent times, much consideration has been given to problem solving and teaching methods
that connect various areas of mathematics into a more unified whole. Educators in the field of
mathematics agree that using more than one approach to solve the same problem promotes the de-
velopment of mathematical reasoning (Polya, 1973; Schoenfeld, 1985; National Council of Teachers
of Mathematics, 2000). The solution of problems using different methods encourages flexibility and
creativity (Tall, 2007; Leiken & Lev, 2007). Moreover, proving a result or solving a problem using
methods from various branches in mathematics (e.g., geometry, trigonometry, analytical geometry,
vectors, complex numbers) deepens mathematical understanding. Our approach of presenting
multiple proofs of the same problem as a tool for constructing mathematical connections is sup-
ported by Polya (1973, 1981), Schoenfeld (1988), Ersoz (2009), The National Council of Teachers of
Mathematics (2000), and Levav-Waynberg and Leiken (2009).

Similar to the idea of “one problem with many solutions/proofs,” is the idea of multiple so-
lution tasks presented by Leiken & Lev (2007), Leiken (2009), Levav-Waynberg and Leiken (2009),
and Stupel & Ben-Cahim(2013). Leiken (2009) points out that differences between proof methods
may be explained along four dimensions, namely: (1) different representations of a mathematical
concept; (2) different properties (definitions or theorems) of mathematical concepts from a particular
mathematical topic; (3) mathematical tools and theorems from different mathematical branches;
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(4) different theorems and tools from different subjects (not necessarily from mathematics). In our
case, we apply the third type of difference: in this paper, we present different solutions using tools
and theorems from Euclidean geometry, analytical geometry, trigonometry, vectors, and complex
numbers. We present a geometric proof for an algebraic proposition that students typically prove
using algebraic techniques. Our geometric proof is composed of four auxiliary propositions.

2 The proposition

If a, b, and c are positive numbers, and (1) and (2) hold:

a2 + ac = b2 (1)

b2 + ab = c2 (2)

then we may conclude

a2 + bc = c2 (3)

3 An algebraic solution

The solution presented here is one of several possible methods accessible to students in early
secondary level courses (i.e., typical 14-15 year olds).

From (1) we eliminate and obtain

c =
b2 − a2

a
(4)

Next, we substitute the resulting expression for c in (2), and obtain

b2 + ab =

(
b2 − a2

)2
a2

b(a+ b) =
(b− a)2(b+ a)2

a2

Since a and b are positive, b+ a 6= 0, therefore b = (b−a)2(b+a)
a2

.

We expand, collect similar terms, and obtain

b3 − b2a− 2a2b+ a3 = 0 (5)

We denote a2 + bc− c2 as M and prove that M = 0 (which proves the proposition).

We substitute b2−a2

a for c from (4), and b2 + ab for c2 from (2) into the expression for M , obtaining

M = a2 +
b(b2 − a2)

a
− (b2 + ab)

From (5) we obtain: M = a3+b3−a2b−b2a−a2b
a = a3−2a2b−b2a+b3

a = 0 and, hence, it follows that
a2 + bc = c2.
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4 How would Pythagoras have formulated the problem, had he lived
today?

Now we recast the problem in a geometric context, asking how Pythagoras may have formulated the
proposition. In ancient Greece, a2 meant the area of the square whose side length is a, and bc meant
the area of the rectangle whose side lengths are b and c. Therefore, is probable that Pythagoras
would have given the problem a geometrical interpretation such as the following.

4.1 The proposition in its geometrical form

Recasting the original proposition in a geometric context, we are given three segments whose
lengths are a, b, c, as shown in Figure 1.

Fig. 1: Geometric interpretation of the original proposition.

In a corresponding manner, we prove that the geometric equivalent holds, as shown in Figure 2.

Fig. 2: Geometric interpretation of the original result.

Note that the notation inside the squares is modern script. The Greeks would likely have only used
the drawings of the quadrilaterals.
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5 A geometric proof

The proof we offer here is comprised of 4 auxiliary propositions (lemmas), after which we present a
proof of the main proposition.

Lemma 5.1. The following inequality holds: c > b > a

Proof. From (1) it follows that b > a, and from (2) it follows that c > b.

Lemma 5.2. The following inequality holds: a+ b > c.

Proof. It is given in (2) that b2 + ab = c2. From proposition (1) it follows that c > b, therefore it is
clear that a+ b > c, because (a+ b)b = c2. From the segments a, b, c, one can form a triangle (by
combining propositions (1) and (2)).

Lemma 5.3. If in the triangle ABC, whose sides are a, b, c, and whose angles are α, β, and γ, there holds (1)
a2 + ac = b2, then β = 2α.

Fig. 3: Geometric interpretation of Lemma 5.3.

Proof. We extend CB to D, so that BD = AB (see Figure 3).Therefore DC = a+ c. But from the
data there holds a(a+ c) = b2, therefore a+c

b = b
a , in other words DC

AC = AC
BC . Therefore, from the

first theorem of similarity,4ABC ∼ 4DAC, and therefore ∠D = α. But DB = AB (the auxiliary
construction), and hence β = 2α.

Lemma 5.4. If in the triangle ABC whose sides are a, b, c, and whose angles are α, β, and γ, there holds
a2 + ac = b2 and b2 + ab = c2, then γ = 4α (see Figure 4).

Fig. 4: Geometric interpretation of Lemma 5.4.

Proof. From Lemma 5.3, β = 2α. We extend AC to E, so that BC = CE = a (see Figure 5). From
the data, there holds b2 + ab = c2, therefore b(a+ b) = c2. and hence it follows that b

c = c
a+b . In the

same manner (as in the proof of Lemma 5.3), we have4ABC ∼ 4AEB. Therefore, ∠E = 2α, but
the triangle BCE is an isosceles triangle, and hence γ = 4α.
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Fig. 5: Extending AC to E.

5.1 Conclusion from Lemmas 5.1 - 5.4

If a, b, and c are three segments that statisfy the relations a2 + ac = b2 and b2 + ab = c2, then from
the segments a, b, and c, one can form4ABC with magnitudes of angles ∠A, ∠B, and ∠C equal to
α, 2α, and 4α, respectively. Therefore, 7α = 180◦, and α = 180◦

7 (see Figure 6).

Fig. 6: Angle measures in4ABC.

We now return to the main proposition and prove it.

Theorem 5.5. To show:
a2 + ac = b2

b2 + ab = c2
=⇒ a2 + bc = c2

Proof. See Figure 7. We mark off the segment AD on AB, so that, AD = AC = b(c > b). Therefore
the length of the segment BD is c − b. The triangle ADC is isosceles with vertex angle of α, and
therefore each of the base angles is 3α (since it was proved that α = 180◦

7 ), and also ∠C = 4α, and
therefore ∠DCB = α. Hence, it follows that4BCD ∼ 4BAC, and there holds BC2 = BD ·BA,
in other words a2 = (c− b)c, and it follows that a2 + bc = c2.

6 A trigonometric proof

In order to present mathematics as an extensive field comprised of various interconnected branches,
we present a trigonometric proof of the task.

Theorem 6.1. Given is a, b, c > 0 and

a2 + ac = b2 (6)

b2 + ab = c2 (7)
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Fig. 7: Visual confirmation of the relationship.

We prove the following.

a2 + bc = c2 (8)

Proof. As in the geometric proof, we note that c > a > b and a+ b > c and therefore the lengths of
the segments a, b, and c represent segments that form a triangle.

From the Law of Sines, we obtain from (6) that

sin2(∠A) + sin(∠A) · sin(∠C) = sin2(∠B) =⇒ (9)

sin(∠A) · sin(∠C) = sin2(∠B)− sin2(∠A) (10)
= (sin(∠B)− sin(∠A))(sin(∠B) + sin(∠A)) (11)

Using the trigonometric identities for the sum and difference of angles, we obtain the following.

2sin
∠B − ∠A

2
· cos∠B + ∠A

2
· 2sin∠B + ∠A

2
· cos∠B − ∠A

2
= sin(∠A+ ∠B) · sin(∠B − ∠A)

(12)

= sin∠C · sin(∠B − ∠A) (13)

Since sin∠C 6= 0, we obtain.

sin∠A = sin(∠B − ∠A) (14)

Since this is a triangle, we have ∠A = ∠B − ∠A =⇒ ∠B = 2∠A. In the same manner, from (7) we
obtain ∠C = 2∠B. From the relations obtained between the angles, we have ∠C = 2∠B = 4∠A,
and since the sum of angles in the triangle is ∠A+ ∠B + ∠C = 180◦, we obtain

∠A+ 2∠A+ 4∠A = 7∠A = 180◦ =⇒ ∠C =
180◦ + ∠A

2
(15)

2∠C = 180◦ + ∠A =⇒ ∠C − ∠A = 180◦ − ∠C (16)

From which there follows:

sin(∠C − ∠A) · sin∠B =⇒ sin∠B · sin∠C (17)

And therefore

sin2∠C − sin2∠A = sin∠B · sin∠C =⇒ a2 + bc = c2 (18)
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7 Concluding remarks and implications for teaching

We constructed proofs of our proposition using a combination of several fields in mathematics.
In our work, geometry came to the aid proof in algebra while algebra provided the source of our
challenging problem. We used trigonometry to construct another proof. Through it all, it was
apparent to us how beautiful mathematics is. In the words of Hardy (1940), “the mathematician’s
patterns, like the painter’s or the poet, must be beautiful; the ideas, like the colors or the words,
must fit together in a harmonious way. Beauty is the first test: there is no permanent place in
this world for ugly mathematics.” The three different methods we employed resulted in the same
relations between the sides of the triangle. Geometry is a goldmine for multiple solution tasks.
Proofs may be derived by applying different methods within the specific topic of geometry or
within other mathematical areas. The multiple solutions that were presented herein for one problem
demonstrate the connectivity between different areas of mathematics. Multiple proofs foster both
better comprehension and increased creativity in mathematics for the student/learner and challenge
for the teacher.
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