Drawing Sequences

Michael Todd Edwards, Miami University
Alex Mains, Mandan High School - Mandan, North Dakota
Steve Phelps, Madiera High School & University of Cincinnati

Abstract: In the following article, the authors discuss ways programming can be used to foster creative
thinking and inquiry-oriented exploration of number patterns and their properties. Using Trinket
(https: // trinket. i0/), a freely available on-line coding platform, students write and run Python
code to animate number sequences as they engage in mathematics aligned to Common Core standards.
Keywords. Programming, inquiry, geometry, pattern

1 Introduction

ration of number sequences in the fifth grade. In Operations and Algebraic Thinking (5.0A),

CCSSM expects students to “generate two numerical patterns using two given rules,” and to
“identify apparent relationships between corresponding terms” (p. 35). Papert (1980) and others
(Jang and Lew, 2011; Lewis and Shaw, 2012) have found computer programming to be a powerful
vehicle to help students in the early grades make connections between numerical patterns and
geometric objects. In the following paragraphs, we discuss ways programming can be used to foster
creative thinking and inquiry-oriented exploration of number patterns and their properties. Using
Trinket (https://trinket.io/), a freely available on-line coding platform, students write and run
Python code to animate number sequences as they engage in mathematics aligned to Common Core
standards. Trinket is freely accessible from any web browser on any device and requires no logins
or software installation.

The Common Core State Standards for Mathematics (CCSSO, 2010) recommends the explo-

2 A First Example

Prior to engaging them in coding, we introduce students to a process that generates drawings from
numerical sequences. We distribute grid paper and present the following repeating sequence in a
whole class setting.

1,3,5,7,9,1,3,5,7,9,...

As we engage in the drawing process, we interpret each term of the sequence as the length of an
individual line segment. We demonstrate this with students in a step-by-step manner, using grid
paper to draw segments one at a time. Drawing each segment from left to right on the grid paper,
we rotate our paper clockwise 90 degrees after each segment is drawn (so that our papers are always
oriented in portrait or landscape format). Figure 1 illustrates grid paper with the first term of the
aforementioned sequence already drawn.

Page 44 Ohio Journal of School Mathematics 74

Fig. 1: Initial grid provided to students.

Using grid paper, students turn the paper clockwise 90 degrees (i.e., left to right), then draw the
next term in the sequence (i.e., 3) as shown in Figure 2.

Fig. 2: Drawing of the first 2 terms of sequence 1,3,5,7,9,1,3,5,7,9,1,.. ..

Students continue this process, rotating their grid paper 90 degrees clockwise then drawing a new
segment with length corresponding to the next term. Figure 3 illustrates a drawing of the first 6
terms of the sequence.

After drawing the first few steps, we ask students to predict what will happen as more terms are
drawn. For instance,

e Q1: Will a pattern emerge as we continue to draw terms?
e Q2: If we draw the first 10 terms, will we need another sheet of paper?
e Q3: As we draw more terms, will the segments eventually cross?

At this point, we ask students to continue drawing terms of the sequence on their own to explore
their predictions. As students draw, a pattern exhibiting four-fold rotational symmetry emerges, as

Ohio Journal of School Mathematics 74 Page 45

Fig. 3: Drawing of the first 6 terms of sequence 1,3,5,7,9,1,3,5,7,9,1,.. ..

shown in Figure 4 (i.e., Q1 is answered). Students see that the drawing fits on a single page (i.e., the
answer to Q2 is “no”), tracing the same path after the repeated terms 1, 3, 5,7, and 9 are drawn 4
times. Additionally, students recognize that the segments corresponding to terms 5 and 9 cross (i.e.,

the answer to Q3 is “yes”).
—

Fig. 4: A complete drawing of the periodic sequence 1,3,5,7,9,1,3,5,7,9,1,....

This first example encourages students to generate more questions, more sequences, and more
drawings. For instance, consider the following.

e Q4: Is it possible to construct sequences with drawings that are familiar, closed shapes? For
instance, is there a sequence that generates a rectangle? A square? A plus sign?
e Q5: Is it possible to construct a sequence that generates a pattern that never repeats?

At this point, after students have a solid understanding of the drawing process, we encourage them
to explore questions as they generate their own examples.

Page 46 Ohio Journal of School Mathematics 74

3 Student Exploration

3.1 Types of Sequences

As students create their own number patterns, we remind them that sequences can include patterns
from one term to the next. For instance, sequences are arithmetic when one can add a fixed
value (i.e., fixed difference) to any term to obtain the next term. For instance, the terms 2, 6, 10, 14
suggest a fixed difference of 4 (i.e., a “+4” sequence). Sequences are geometric when one can
multiply any term by a fixed value (i.e., fixed ratio) to obtain the next term. For instance, the terms
2,6, 18,54 suggest a fixed ratio of 3 (i.e., a “+3” sequence). Additionally, terms of sequences can
grow in different ways. For instance, terms can repeat (e.g., 1, 3,5,7,1,3,5,7, 1, etc.) or diverge (e.g.,
1,3,5,7,9...).

3.2 Student Examples

As students generate their own sequences and their own drawings, they share their findings with
their classmates in whole group settings. We encourage students to look for connections between
representations as they seek to prove why certain patterns appear within and between drawings.
For instance, students find that multiplying terms of a sequence by a fixed value creates scaled
copies of their original drawings (i.e., similar shapes). This is illustrated with drawings generated
by repeating sequences 1, 3,5, 1, 3,5, ... and 2,6, 10, 2,6, 10, . . . depicted in Figure 5.

Fig. 5: Multiplying terms of a sequence by a fixed value results in scaled drawings.

Others find that familiar shapes can be drawn using simple, repeating patterns. Students often
“work backwards” - creating an initial drawing first, then associating a number sequence to the
drawing. Such an approach was used to generate the square, rectangle, and “plus” shape (i.e.,
dodecagon) illustrated in Figure 6.

Ohio Journal of School Mathematics 74 Page 47

d 4
3}%3}'}.;3),.,.\ ST RIES NP EAES
o

2“) 1)-2-:'1"1)"2—) Y

Fig. 6: Sequences may generate square, rectangular, and plus-shaped drawings (i.e., the answer to Q4 is

Uyes”).

Sequences that continue to grow will quickly fall outside the bounds of their grid paper (the answer
to Q5 is “yes”). By labeling lengths of line segments in such drawings, students discover additional
numeric patterns as highlighted in Figure 7.

1S

| TR E—
-
—
e __al ¢ w]
I
5
i
9
|
13
' >
w7

Fig. 7: More patterns are uncovered when lengths of segments are labeled.

4 Generalization with PYTHON Programming

After spending time exploring drawings and sequences with numerous sheets of grid paper, teachers
and students recognize a need to generate drawings more quickly. Drawing sequences by-hand

Page 48 Ohio Journal of School Mathematics 74

is error-prone and slows the process of hypothesis testing various pattern conjectures. We have
found that providing students with sample PYTHON code is an invaluable tool in the sequence
exploration process. Figure 8 provides sample PYTHON code we initially present to our students.

Dtrinket »fun 7

main. py + L3

import turtle

yertle.shape("arrow")
yertle.width(1}
yertle.penup()
yertle.goto(®,0)

>
1
2
3 vyertle = turtle.Turtlel()
a4
5
7]
7
8 vyertle.pendown()

9 vyertle.color("blue")
16

11~ for i in range(5):

12 yertle.right(98})
13 yertle. forward(18)
14 yertle.right(9a)
15 yertle. forward(30)
16 yertle.right (98}
17 yertle. forward(58)
18 yertle.right(98})
19 yertle. forward(70)

Fig. 8: Sample PYTHON code (freely available at bit. ly/ drawingsequences

Clicking on the run button within the trinket.io environment, students run our initial PYTHON
code “as-is.” Doing so results in the drawing shown in Figure 9.

|

Fig. 9: Drawing generated by initial PYTHON code.

Rather than telling students precisely what the code does, we encourage them to explore the code by
repeatedly modifying and running it. For students who need help getting started, we ask them to
change various snippets of code within the program and observe changes in the resulting drawings.
For instance,

e Inline 5, what does changing yertle.width(1) to yertle.width(8) do?
e In line 7, what does changing yertle.goto(0,0) to yertle.goto(50,50) do?
e Inline 9, what does changing yertle.color(‘ ‘blue’’) to yertle.color(‘‘green’’) do?

Students quickly note that lines 1-9 of the program control attributes of the drawing such as line
thickness, initial position, and color, while lines 11-19 control the sequence to be drawn. Modifying
the range parameter in line 11 from 5 to 3 results in the drawing shown in Figure 10.

Ohio Journal of School Mathematics 74 Page 49

—
—

1

Fig. 10: Resulting drawing when range parameter is changed to 3.

In this manner, through exploration, students determine that the range parameter controls how
many times a cluster of sequential terms (e.g., 10, 30, 50, 70) is drawn. When the range parameter
is set to 3, three loops are drawn by the code. When the parameter is 5, five loops are drawn.
The original code draws the terms 10, 30, 50, 70, 10, 30, 50, 70, 10, 30, 50, 70, 10, 30, 50, 70, 10, 30, 50, 70.
Next, we challenge students to modify the original code to draw the shape generated by the
first sequence provided in this paper - namely, 1,3,5,7,9,1,3,5,7,9, ... Noting that the command
right (90) is repeated after every forward command, students speculate that right (90) rotates
the paper 90 degrees clockwise while the forward(x) command draws a segment « units long.
Students copy and paste the last 2 lines of code (i.e., lines 18-19) and paste them to the end of
the program, modifying the last line to read yertle.forward(90). When the code is executed, as
shown in Figure 11, it generates a shape similar to the one students generated by-hand in the first
portion of our activity.

= Dtrinket >R ?
main. py + &

import turtle

yertle = turtle.Turtle(}
yertle.shape("arrow")
yertle.width(2)
yertle.penup()
yertle.goto(@,®)
yertle.pendown()

9 yertle.color("blue")

11- for i in range(5):

12 yertle.right(98)
13 yertle.forward(18)
14 yertle.right(90) -l
15 yertle.forward(38)

16 yertle.right(9@)
17 yertle.forward(50)
18 yertle.right(98)
19 yertle.forward(78)
20 yertle.right(90)
21 yertle.forward(98)

Fig. 11: Students add two lines of code to draw the shape formed by the first example sequence.

Once students grasp the basics of the code editing and execution features within trinket.io, they are
able to explore a wide variety of questions and sequences.

5 Further Exploration Ideas
Using the “What-If Not” approach (Brown and Walter, 2005) and PYTHON, students can explore

the effect of changing various attributes of the original sequence drawing process. For instance,
what would happen if we rotated our paper at angles other than 90 degrees? The code highlighted

Page 50 Ohio Journal of School Mathematics 74

in Figure 12 fixes the length of each line segment to be 100 units and rotates the grid 72 degrees
after each segment is drawn.

= Dtrinket P>t 7

< main. py + B

import turtle

>
1
2
3 yertle = turtle.Turtle()
4 yertle.shape("arrow")

5 yertle.width(1)

6 yertle.penup()

7 yertle.goto(100,180)

8 yertle.pendown()

9 vyertle.color("blue")

10

11~ for i in range(5s)

12 yertle.right(72)

13 yertle.forward(100)

Fig. 12: Drawing generated by drawing the sequence 100, 100, 100, . . . with grid rotations of 72 degrees.

More interesting results are generated by constructing a sequence with terms representing angle
measures of grid rotations. For instance, consider the following periodic sequence.

10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°, 110°, 120°, 130°, 140°, 150°, 160°, 170°, 10°, 20°, 30°

Fixing segment lengths as 40 units and rotating by the angle measures in the aforementioned
sequence, generates the drawing shown in Figure 13.

import turtle
tina = turtle.Turtle()

tina.width(1)

tina.penup()

tina.goto(@,B@)

tina.pendown()

tina.color("blue")

9~ for j in range{4):

10 for i in [10,20,30,40,50,60,70,80,90,100,
11~ 110,120,130,140,150,160,170]:

12 tina.right(i)

13 tina. forward(4@)

(=T = T B PR SN

Fig. 13: Python code (left) and drawing (right) generated by a sequence of angle measures.

6 Summary

In the preceding discussion, we have illustrated ways in which teachers and students can make
connections between numerical patterns and geometric objects by generating drawings from
numerical sequences. Specifically, we’ve highlighted the use of Python programming as a tool to
edit, write, and run code that animates number sequences. As students use the software, they are
encouraged to see mathematics as an exploratory discipline, one in which experimentation and
inquiry lie at the heart of understanding. When teachers provide students with opportunities to
construct and analyze their own sequences, they enable students to take ownership of their own
learning in a fun, creative, and engaging context while addressing curricular recommendations set
forth by Common Core State Standards for Mathematics (CCSSM).

Ohio Journal of School Mathematics 74 Page 51

References

Brown, S. & Walter, M. (2005). The art of problem posing. Mahwah, NJ: Lawrence Erlbaum.

National Governors Association Center for Best Practices & Council of Chief State School Officers
(CCSSO). (2010). Common Core State Standards for Mathematics. Washington, DC: Authors.

Jang, I. O., & Lew, H. C. (2011). Case studies in thinking processes of mathematically gifted
elementary students through Logo programming. Work 4, 9.

Lewis, C. M., & Shah, N. (2012). Building upon and enriching grade four mathematics standards
with programming curriculum. In Proceedings of the 43rd ACM technical symposium on Computer
Science Education (pp. 57-62). ACM.

Papert, S. (1980) Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.

Michael Todd Edwards, m.todd.edwards@gmail . com, teaches mathe-
matics methods courses at Miami University in Oxford, Ohio. He is the
co-editor of The North American GeoGebra Journal, The Ohio Journal
of School Mathematics, and CITE-Math.

Steve Phelps, sphelps@madeiracityschools.org, teaches at AP
statistics and computer science courses at Madeira High School in
Madeira, Ohio. He also teaches teachers through the University of
Cincinnati MAT program. He co-facilitates monthy Cincy Math Circle
meetings and co-directs the GeoGebra Institute of Ohio.

Alex Mains, MAINSAM@Gmiamioh.edu, is @ high school math instructor at
Mandan High School in Mandan, North Dakota, teaching Algebra 1 and
Geometry. His interests include engaging students in inquiry-based
teaching methods and making mathematics accessible, challenging,
and fun for all learners.

Page 52 Ohio Journal of School Mathematics 74

