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Abstract
This article is the second of a series in investigating basic concepts of hyperbolic
geometry using WebSketchpad as the vehicle for the investigations. This
particular article focuses on angle relationships and theorems about triangles.
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1 Introduction
In the first article of this series, we examined some of the history of hyperbolic geometry
and from where it grew. The most significant difference between hyperbolic and Euclidean
geometries is that there is more than one line parallel to a given line through an external
point. The existence of these multiple parallel lines causes some changes to what was
studied in Euclidean geometry. The largest effect is that triangles no longer have an angle
sum of exactly 180∘, now being strictly less than 180. This also implies that a quadrilateral
sum is less than 360°, thus denying the existence of rectangles in hyperbolic geometry. This
article will consider the effects on angle relationships and properties of triangles.

In hyperbolic geometry, are two angles of a linear pair still supplementary? Are a pair of
vertical angles still congruent? A quick construction in WSP with measures should be enough
to confirm that both facts remain true, just as they were in Euclidean geometry. (Note: the
Poincaré diskmay not be shown on all remaining sketches.) The proofs of these two theorems
are exactly the same as in Euclidean geometry.

Figure 1
An example of linear pairs and vertical angles in hyperbolic geometry

Note: This construction (created in WSP) demonstrates that in hyperbolic geometry, as in
Euclidean geometry, two angles forming a linear pair remain supplementary, and vertical
angles remain congruent.
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What about an exterior angle of a triangle? In Euclidean geometry, there are two theorems
about exterior angles and their remote interior angles. First, the measure of an exterior angle
of a triangle is greater in measure than either of its two remote interior angles. Second, the
measure of the exterior angle is equal to the sum of the measures of its two remote interior
angles. Are these two theorems still true in hyperbolic geometry?

Construct any line and external point. Create the sketch as shown. You will also need the
Measure Angle tool. To measure an angle, click on the points as if you were naming the
angle by three points. For example, to measure, select 𝐴, 𝐵, then 𝐶. The measurements can
be moved by clicking and dragging them by the equal sign to any location. To calculate the
sum, first select the Calculate tool, then the equal sign in the blinking box. This should
create a dialog box entitled Edit Calculation.

Figure 2
Using the Edit Calculation dialog to sum angles in WSP

To create the sum, click on 𝑚∠𝐵𝐴𝐶, then +, then 𝑚∠𝐴𝐵𝐶, then OK. This sum will be dynamic
in that, if you drag any of points 𝐴, 𝐵, or 𝐶, the sum will reflect that change in measurements.
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Figure 3
The measure of an exterior angle compared to either the measure of a remote interior angle
and to the sum of the measures of its two remote interior angles in Euclidean (left) and
hyperbolic (right) geometries.

Clearly, the counterexample in hyperbolic geometry is enough to show that the sum of the
measures of the remote interior angles is no longer equal to the measure of the exterior
angle in hyperbolic geometry.

To show that the measure of an exterior angle is greater than the measure of either remote
interior, start with any triangle as shown in Figure 4 (left). Locate a point 𝐷 ∈ #  »𝐴𝐵 such that
𝐴 ∗ 𝐵 ∗ 𝐷, as shown in Figure 4 (right). Construct the midpoint 𝐸 of 𝐵𝐶. Locate point 𝐹 ∈ 𝐴𝐹
such that 𝐴𝐸 = 𝐸𝐹. ∠𝐴𝐸𝐶 and ∠𝐵𝐸𝐹 form a pair of vertical angles and are therefore congruent.
This implies that △𝐴𝐸𝐶 ≅ △𝐹𝐸𝐵 by SAS.

Figure 4
Proof that the measure of an exterior angle is greater than the measure of either remote
interior angle.

# »𝐵𝐹 is between #  »𝐵𝐶 and #  »𝐵𝐷 which implies 𝑚∠𝐶𝐵𝐷 = 𝑚∠𝐶𝐵𝐹 + 𝑚∠𝐹𝐵𝐷. Therefore 𝑚∠𝐶𝐵𝐷 >
𝑚∠𝐶𝐵𝐹 = 𝑚∠𝐴𝐶𝐵 (the whole is greater than the part). Repeat the process by extending 𝐶𝐵 to
construct the linear‐pair partner of ∠𝐶𝐵𝐷 and the midpoint of 𝐴𝐵 to prove 𝑚∠𝐹𝐵𝐷 > 𝑚∠𝐵𝐴𝐶.
(This proof also works in Euclidean geometry.)

The last topic of angle relationships for this paper will be the angles formed by two lines and
a transversal. It can be proven that if alternate interior angles are congruent, then the two
lines are parallel. Suppose that lines 𝑙 and 𝑚 are cut by a transversal 𝑡 such that ∠1 ≅ ∠2, as
shown in Figure 5.
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Figure 5
Congruent alternate interior angles imply that two lines are parallel.

To show that 𝑙 ∥ 𝑚, use an indirect proof. Assume that 𝑙 ∦ 𝑚. Then 𝑙 intersects𝑚 somewhere.
Without loss of generality, assume that the intersection occurs on the same side as ∠2 at
point 𝐶. This will construct △𝐴𝐵𝐶 where ∠1 is an exterior angle with a remote interior angle
of ∠2. This implies 𝑚∠1 > 𝑚∠2 which is a contradiction since the two angles are congruent.
Therefore, it is not the case that 𝑙 ∦ 𝑚, so 𝑙 ∥ 𝑚 must be true.

Using vertical angles, linear pairs of angles and transitivity, students can easily show that if
the corresponding angles are congruent or that same side interior angles are supplementary,
then the lines are parallel in Euclidean geometry. How do these theorems apply in hyperbolic
geometry?

Refer to Figure 6 below. Notice that∠𝐴𝐹𝐶 and∠𝐹𝐶𝐷would be considered as a pair of alternate
interior angles that are also congruent (both are right angles). So 𝐴𝐵 ∥ 𝐶𝐷. Likewise, the other
relationships about corresponding angles and same side interior angles would still be true.
These three theorems about certain angle relationships implying two lines being parallel are
still true in hyperbolic geometry. But what about their converses?

Figure 6
Parallel Lines and Alternate Interior Angles

(a) Euclidean case: two parallel lines cut by a
transversal yield congruent alt. interior angles.

(b) Hyperbolic case: the alternate interior angles
need not be congruent.

If two parallel lines are cut by a transversal in Euclidean geometry, the alternate interior
angles formed are congruent. In Figure 6 (Euclidean), since 𝐶𝐷 ∥ 𝐴𝐵, then ∠𝐴𝐹𝐶 ≅ ∠𝐷𝐶𝐹. In
Figure 7 (hyperbolic), since # »𝐶𝐸 is also parallel to 𝐴𝐵, the alternate interior angles formed here
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would be ∠𝐴𝐹𝐶 and ∠𝐸𝐶𝐹, which clearly are not equal in measure. As pictured, 𝑚∠𝐷𝐶𝐹 = 90°
and # »𝐶𝐸 is between rays #  »𝐶𝐷 and # »𝐶𝐹, so ∠𝐸𝐶𝐹 must be acute and 𝑚∠𝐸𝐶𝐹 < 𝑚∠𝐴𝐹𝐶. Here the
conjecture is disproven by counterexample. This theorem will have a major impact on what
is true in Euclidean geometry but not true in hyperbolic geometry.

2 Triangle Properties
There are many properties of triangles that can be investigated. The focus here will be
on these theorems: the Isosceles Triangle Theorem, the Scalene Inequality Theorem, the
Triangle Inequality Theorem, the angle sum of a triangle, the Pythagorean Theorem, triangle
congruence and the points of concurrency.

Most students will recall that, in an isosceles triangle, two sides congruent imply the angles
opposite are congruent and vice versa. To make this sketch like Figure 7 to demonstrate, use
the Circle and Point tool in WSP. Make a segment and then use one endpoint as the
center of the circle and the other endpoint to set the radius. Choose any point on the circle
as the third point of the triangle.

Figure 7
Constructing an isosceles triangle.

The Scalene Inequality Theorem states that the largest side is opposite the largest angle and
vice versa. Students can easily construct a triangle to investigate that this theorem remains
true. In any △𝐴𝐵𝐶, ask the students to measure the three sides of the triangle as in Figure 8.
Drag the measurements so that they appear in order from largest to smallest. Then measure
the angles and order them in the same manner. Where are the angles found in relation to the
sides? Would it be the same or different if we measured and ordered the angles first?
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Figure 8
Investigating the Scalene Inequality Theorem.

Using Figure 8, since △𝐴𝐵𝐶 is scalene, assume 𝐴𝐶 > 𝐵𝐶 without loss of generality. Find point
𝐸 ∈ 𝐴𝐶 such that 𝐶𝐸 = 𝐵𝐶. Now △𝐵𝐶𝐸 is isosceles with ∠𝐸𝐵𝐶 ≅ ∠𝐶𝐵𝐸. 𝑚∠𝐴𝐵𝐶 = 𝑚∠𝐴𝐵𝐸 +
𝑚∠𝐸𝐵𝐶 which implies 𝑚∠𝐴𝐵𝐶 > 𝑚∠𝐸𝐵𝐶 = 𝑚∠𝐵𝐸𝐶. But since ∠𝐵𝐸𝐶 is an exterior angle of
△𝐴𝐵𝐸, 𝑚∠𝐵𝐸𝐶 > 𝑚∠𝐴. Putting the inequalities together, 𝑚∠𝐴𝐵𝐶 > 𝑚∠𝐵𝐸𝐶 > 𝑚∠𝐴.

Now for the other direction, assume 𝑚∠𝐴𝐵𝐶 > 𝑚∠𝐴. Using Trichotomy, either 𝐴𝐶 < 𝐵𝐶, 𝐴𝐶 =
𝐵𝐶, or 𝐴𝐶 > 𝐵𝐶. From what was just proved, if 𝐴𝐶 < 𝐵𝐶 then 𝑚∠𝐴𝐵𝐶 < 𝑚∠𝐴, which contradicts
our assumption. If 𝐴𝐶 = 𝐵𝐶, then 𝑚∠𝐴𝐵𝐶 = 𝑚∠𝐴, which also contradicts our assumption.
Therefore, 𝐴𝐶 > 𝐵𝐶 must be true.

Likewise, the Triangle Inequality Theorem (the lengths of two sides must sum to be greater
than the length of the remaining side) can be tested in a similar sketch (see Figure 9).

Figure 9
Investigating the Triangle Inequality Theorem.

For the proof, find the point 𝐷 ∈ 𝐴𝐶 such that 𝐷𝐶 = 𝐵𝐶, creating an isosceles triangle
△𝐵𝐶𝐷. Using betweenness of rays, 𝑚∠𝐴𝐵𝐶 > 𝑚∠𝐷𝐵𝐶 = 𝑚∠𝐵𝐷𝐶. From the Scalene Inequality
Theorem, it follows that 𝐴𝐶 > 𝐵𝐶. But 𝐴𝐶 = 𝐴𝐷 + 𝐷𝐶 > 𝐵𝐶.

Triangle congruency is a very important concept in Euclidean geometry. Many proofs contain
triangle congruency in some manner. The valid shortcuts from Euclidean geometry are SSS,
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SAS, ASA, AAS and HL. Typically, SAS is assumed to be true as a postulate. Students can
construct a triangle with the specified congruent corresponding parts to illustrate if the other
shortcuts might still be valid. For example, consider the case for SSS. In WSP, construct any
hyperbolic triangle . Using the tool Circle by Center and Radius, each side of△𝐴𝐵𝐶 can
be duplicated to create △𝐷𝐸𝐹. Do so by selecting the tool, then 𝐷, 𝐴 and 𝐵. Repeat this with
the points 𝐷, 𝐴 and 𝐶 and also 𝐸, 𝐵 and 𝐶. The angles of both triangles can then be measured
to see if the corresponding angles are congruent.

Figure 10
Investigating SSS Congruence.

Logically, a decision can be made about the validity of ASA and AAS. In Euclidean geometry,
if one knows the measures of two angles of a triangle, the third angle measure can be
calculated by subtracting the other two measures from 180°. That is not the case in
hyperbolic geometry. Recall that since the angle sum is strictly less than 180°, the third
angle measure cannot be calculated. All three angle measures must be known, which leads
us to an additional thought to investigate.

Here is something unexpected though. The figure below shows two triangles in which all
the corresponding angles are congruent. Compare the two triangles. Do they appear to be
congruent?
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Figure 11
Investigating AAA Congruence.

Let us assume that the two triangles do have congruent corresponding angles but that the
triangles are not congruent. Without loss of generality, assume that 𝐴𝐶 > 𝐷𝐹. Find a point 𝐺
on # »𝐷𝐹 such that 𝐷 ∗ 𝐹 ∗ 𝐺 and 𝐷𝐺 ≅ 𝐴𝐶, and a point 𝐻 on #  »𝐷𝐸 such that 𝐷 ∗ 𝐸 ∗ 𝐻 and 𝐷𝐻 ≅ 𝐴𝐵
(see the figure to the right above).

Now △𝐴𝐵𝐶 ≅ △𝐷𝐻𝐺 by SAS, which implies that ∠𝐶 ≅ ∠𝐺 and ∠𝐵 ≅ ∠𝐻. But since all of
the angles of △𝐴𝐵𝐶 are congruent to the corresponding angles of △𝐷𝐸𝐹 from our original
assumption, ∠𝐷𝐹𝐸 ≅ ∠𝐺 and ∠𝐷𝐸𝐹 ≅ ∠𝐻. We have a linear pair of angles at 𝐹, so that means

𝑚∠𝐷𝐹𝐸 + 𝑚∠𝐸𝐹𝐺 = 180°.

By substitution,

𝑚∠𝐺 + 𝑚∠𝐸𝐹𝐺 = 180°.

By the same reasoning,

𝑚∠𝐷𝐸𝐹 + 𝑚∠𝐹𝐸𝐻 = 𝑚∠𝐻 + 𝑚∠𝐹𝐸𝐻 = 180°.

Since 𝐸𝐹𝐺𝐻 forms a quadrilateral,

𝑚∠𝐺 + 𝑚∠𝐸𝐹𝐺 + 𝑚∠𝐹𝐸𝐻 + 𝑚∠𝐻 = 360°.

As discussed earlier, the angle sum of a quadrilateral must be strictly less than 360°. So
our assumption that the two triangles are not congruent is false, meaning that the two
triangles are indeed congruent. Thus, we have proven that AAA is a valid shortcut for triangle
congruency.
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Since we have now used the fact concerning the angle sum of a quadrilateral, is the
Pythagorean Theorem still valid? Figure 12 shows a right triangle with the sides measured
and lengths squared. It is obvious that the sum of the squares of the two legs will not be
equal to the square of the length of the hypotenuse.

Figure 12
Investigating the Pythagorean Theorem.

If the traditional Pythagorean Theorem does not hold, would HL be a valid shortcut for
triangle congruency?

Lastly, we shall consider the points of concurrency of a triangle. The four points of
concurrency that are typically studied are the incenter, circumcenter, orthocenter and
centroid, found at the intersections of the angle bisectors, perpendicular bisectors, altitudes
and medians of a triangle, respectively. As a review of Euclidean geometry, you can easily
construct each point on a sketch and investigate any properties, such as equidistance from
the sides of the triangle (incenter), equidistance from the vertices (circumcenter), or divides a
segment into the same ratio (vertex to centroid: centroid to opposite side = 2:1). Additionally,
three of these points are always collinear (circumcenter, orthocenter, and centroid form the
Euler Line).

Extending into hyperbolic geometry, you can now construct each of these four points (as
shown in Figure 13).
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Figure 13
Common Points of Concurrency in Hyperbolic Geometry.

Drag each of the vertices for each point of concurrency. Do the Euclidean properties still hold
in hyperbolic geometry? If not, what has changed? Is the incenter still equidistant from the
sides of the triangle? Is the circumcenter still the center of the circumscribed circle?

Dragging the points for the circumcenter and orthocenter will show that they are
not necessarily concurrent. The perpendicular bisectors and altitudes end up being
asymptotically parallel, one of two types of parallel lines in hyperbolic geometry. Two
lines that are asymptotically parallel are similar to the concept of asymptotes in graphing
functions. The distance between the two lines decreases but never becomes zero.
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Figure 14
Two Examples Where the Circumcenter (left) and Orthocenter (right) do not exist.

If the circumcenter and the orthocenter do not always exist, can the Euler Line still exist?
You should be able to reason to that answer first, then experiment to verify or reject their
conjecture.

3 Conclusion
In this second article on hyperbolic geometry, familiar concepts about angle relationships
and triangles are investigated. Some concepts remain the same as they were in Euclidean
geometry, some have changed or are no longer valid. Students can see that there are more
geometries than just Euclidean geometry, that there is a common base to the geometries but
each with its distinct differences. The table below shows the similarities and differences of
the theorems presented.

Table 1. Which angle–relations hold in Euclidean vs. Hyperbolic geometry.
Euclidean Geometry Hyperbolic Geometry
If two angles form a linear pair, the two angles are supplementary.
If two angles form a pair of vertical angles, the two angles are congruent.
An exterior angle of a triangle is greater in
measure than either of its two remote interior
angles.

An exterior angle of a triangle is greater than the
sum of the measures of its two remote interior
angles.

If two lines are cut by a transversal forming congruent alternate interior angles, then the two lines
are parallel.
If two parallel lines are cut by a transversal,
the alternate interior angles are congruent.

If two parallel lines are cut by a transversal,
the alternate interior angles are not necessarily
congruent.

Scalene Inequality Theorem: In any triangle, the largest side is across from the largest angle and
vice versa.
Triangle Inequality Theorem: The sum of the lengths of any two sides is greater than the length
of the remaining side.
The angle sum of a triangle is exactly 180°. The angle sum of a triangle is strictly less

than 180°.

The points of concurrency of a triangle are
the incenter, circumcenter, orthocenter, and
centroid.

The points of concurrency of a triangle are the
incenter and the centroid. The circumcenter and
orthocenter do not always exist.
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Recommended References
Editor’s Note: The items below are suggested for readers who wish to explore further
background on dynamic‐geometry software and foundational treatments of hyperbolic
geometry. Each entry is numbered, and the brief italicized annotation is indented so that
it does not “run into” the reference itself.

1. Goldenberg, E. P., & Scher, D. (2014). WebSketchpad: Dynamic Geometry for the Web.
Key Curriculum. https://www.websketchpad.com

WebSketchpad is the browser‐based dynamic‐geometry tool used throughout
this article. Readers who wish to reproduce or experiment with the exact
compass‐and‐straightedge constructions in a web environment will find this resource
indispensable.

2. Anderson, J.W. (2005). Hyperbolic Geometry (2nd ed.). Springer.

A rigorous, proof‐oriented introduction to model‐based hyperbolic geometry (e.g. the
Poincaré disk). Use this text for a solid foundational understanding of the theorems
and constructions used in this article’s hyperbolic sketches.

3. Greenberg, M. J. (1993). Euclidean and Non‐Euclidean Geometries: Development and
History (3rd ed.). W. H. Freeman.

Places Euclidean and hyperbolic geometries in historical perspective. Ideal for readers
who want to see how discovery of non‐Euclidean axioms led to the constructions
described here.

4. Stillwell, J. (1996). Sources of Hyperbolic Geometry. American Mathematical Society.

A collection of the original papers by Beltrami, Poincaré, Klein, etc., that introduced the
Poincaré disk and other hyperbolic models. Highly recommended if you wish to see
“first‐source” proofs.

5. Sinclair, N., & Bruce, C. D. (2015). New opportunities in geometry education at the
primary school. ZDM Mathematics Education, 47, 319–329.

Demonstrates how dynamic‐geometry software can be integrated into K–6 curricula.
Useful if you plan to introduceWebSketchpad or hyperbolic constructions at the primary
level.
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