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Abstract

Data visualization literacy has become crucial in STEM education, particularly in
supporting students in becoming producers rather than consumers of graphical
representations. Yet, secondary students face an accessibility valley where entry-level
tools are too limited in their design capabilities while more advanced programming
environments are too cumbersome to navigate. This paper introduces the framework for
AI-enhanced Literacy In Visualization Education (AILIVE), which leverages large language
models like ChatGPT to democratize data visualization in secondary classrooms.

Grounded in constructionist learning theory, our framework addresses visualization
education’s central paradox: students need to create sophisticated visualizations
to develop representational competence and match their creative vision, but lack
technical skills for implementation. The framework includes five design principles
(meaningful data context, student agency, communication intent, iterative refinement, and
collaborative discourse) implemented through three phases: preparation, investigation,
and synthesis/communication.

We demonstrate AILIVE through the “Snackdown Challenge,” a hypothetical activity
in which students use ChatGPT to visualize data about snack characteristics and class
preference. Natural language interaction enables students to focus on statistical reasoning
and communicating meaning through graphs rather than technical barriers, transforming
learning from procedural exercises to authentic investigation. This approach develops
data visualization literacy essential for 21st-century STEMparticipationwhilemaintaining
focus on conceptual understanding of graphical features over technical proficiency.

Keywords: data visualization literacy, artificial intelligence, ChatGPT, constructionism,
secondary education, STEM education

1 Introduction
In the age of big data, the ability to engage with and understand data visualizations has become
as crucial as traditional textual literacy (Börner et al., 2019). Data analysis is recognized as a vital
component of mathematics and data science curricula in national standards and guidelines documents,
including the Common Core State Standards (2009) and the recent revision of the Guidelines for
Assessment and Instruction in Statistics Education (GAISE II; Bargagliotti et al., 2021). Science
education frameworks, such as the Next Generation Science Standards (NGSS; NRC, 2013), emphasize
the importance of scientifically interpreting data and evidence, highlighting visual representations as
essential for understanding scientific and mathematical concepts and engaging in scientific inquiry
practices. Developing students’ data visualization literacy (DVL), which encompasses the ability to
construct, comprehend, and utilize data visualizations, is an increasingly important goal of STEM
education, so students can become not just consumers but authors and experts in the language of
data and representation.
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Despite this recognized importance, a significant gap exists between aspirational standards and
practical classroom implementation (Rosenberg et al., 2022; D’Ignazio & Bhargava, 2018; Camm et
al., 2023). Schools often face constraints in selecting accessible data visualization tools/software for
their students. Traditional software such as Microsoft Excel or CODAP offers limited customization
options, while programming platforms with more advanced graphing capabilities such as Python,
R, or JMP require students to navigate complex environments or syntax before they can even begin
crafting desired visualizations—an unfortunate challenge shared by virtually all visualization software
available (Frischemeier et al., 2021). These interfaces introduce technological complexities that can
function as barriers: students often struggle to import datasets, assign variables (i.e., understand
measurements and distinguishing between quantitative/qualitative or explanatory/response variables),
select appropriate graph types from numerous options, and format graphs properly with necessary
elements like labels, titles, and legends (Chang et al., 2024).

The consequences of this gap are significant. Current approaches to data visualization education
for primary and secondary school students often rely on teacher-led contexts with predefined, “toy”
(artificial) datasets, which limit children’s engagement with data and their ability to create their own
visualizations in meaningful contexts (Bae et al., 2023). More critically, students are frequently asked
to interpret graphs, but are rarely given the opportunity to construct their own (Börner et al., 2019).
This imbalance leads students to view graphs as end products rather than dynamic tools for statistical
investigation, undermining their development of statistical thinking and diminishing their perception
of overarching scientific process and communication principles (Donnelly-Hermosillo et al., 2020).

Whether constructing graphs manually or digitally, students encounter pragmatic obstacles that divert
mental effort away from the conceptual understanding of data representation; students describe
manual graph construction as “tedious and involving drudgery” (Ates & Stevens, 2003, p. 62). While
traditional technology such as Excel can alleviate some of the drudgery, particularly with large
datasets, both approaches force students to focus on mechanics rather than meaning. Students spend
considerable time determining appropriate graph types, deciding axis placement, establishing scales,
and specifying labels—technical tasks that AI can handle efficiently. This time could instead be devoted
to the core DVL tasks of creating meaningful visualizations and interpreting their significance.

1.1 Metarepresentational Competence (MRC)

The value of offloading technical implementation to AI tools can be better understood through a
review of metarepresentational competence (MRC), which encompasses higher-order representational
abilities beyond mere production skills (diSessa & Sherin, 2000). MRC includes evaluating
the effectiveness of data representations, designing new ones, understanding their underlying
communicative principles and functions, articulating representational choices, and learning new
representations quickly (diSessa, 2004). Students possess rich native competencies for representation
design and critique (p. 298), but these capabilities are often overshadowed by the technical demands of
traditional visualization software. When students must navigate complex interfaces and syntax, their
cognitive resources are diverted away from more valuable metarepresentational activities. The time
students spend determining appropriate graph types, establishing scales, and specifying components
like titles could represent time not spent grappling with the core MRC tasks of creating meaningful
visualizations, interpreting their significance, and critiquing their presentation of information.

By leveraging AI for data visualization creation, students can engage in higher-order representational
practices, particularly, iteratively improving upon their visualization, an opportunity potentially lost
with traditional tools as technological constraints may limit the goal of an engagement (i.e., a lesson)
to be a single viable graph. AI-mediated visualization enables rapid iteration through different forms,
allowing students to compare multiple representations of the same data. Rather than being constrained
by technical limitations, students can focus on what they want their visualizations to reveal and why,
developing critical judgment using sophisticated criteria such as parsimony, precision, systematicity,
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and completeness (diSessa et al., 1991). The conversational nature of AI tools supports cyclical
improvement processes, allowing students to quickly implement changes, evaluate results, and refine
their approach based on emerging understanding.

In traditional software environments, students’ natural representational creativity is often suppressed
as they struggle with technical implementation. For instance, a student might envision a dynamic
visualization showing variables or scales changing over time, or desire to customize graphs with
explanatory annotations (e.g., visual and textual denotations of measures of center and spread), but
abandon these creative ideas when confronted with the technical barriers of conventional tools.
With AI tools, what diSessa refers to as “hyper-richness” in representational thinking (2004, p. 301)
becomes an asset rather than a liability, as students can focus on articulating their intentions and
evaluating effectiveness without getting bogged down in technical details or conventional constraints.
This shift from focusing on mechanics to engaging with underlying principles develops greater
systematicity and reflective awareness in representational practice. By removing technical barriers, AI
tools create a learning environment where students can explicitly consider and justify representational
choices, approaching visualizations as flexible tools for thinking and communication rather than fixed
conventions to be mastered.

While some studies (e.g., Angra & Gardner, 2017) have investigated how novices construct
visualizations and compared their processes to those of experts, few have focused on learners’
construction processes, particularly using computer-based tools for analyzing meaningful (i.e., large
and personally or culturally relevant) datasets (D’Ignazio & Bhargava, 2018). Constructing data
visualizations engages students’ metarepresentational competence (MRC; diSessa, 2004), defined as
the knowledge and reflective reasoning practices involved in creating representations such as graphs
(diSessa & Sherin, 2000). This construction-focused approach aligns naturally with constructionist
learning theories, which prioritize students’ active creation of knowledge artifacts.

1.2 Constructionism as a Framework for DVL

Constructionism provides a useful theoretical lens for understanding how students learn through
creating and sharing visualizations. Introduced by Seymour Papert (Harel & Papert, 1991),
constructionism emphasizes the generation of mathematical meanings through individual and
collaborative bricolage (tinkering) with digital artifacts. Drawing on Piagetian constructivist learning
theory, Papert extended the notion that learners actively construct knowledge to emphasize that
“learning ismost effectivewhen part of an activity the learner experiences as constructing ameaningful
product” (Papert, 1987). In data visualization literacy education, this approach suggests that learning
occurs when students actively construct, manipulate, and modify external representations, marking
an epistemological shift from students passively receiving information to actively constructing
understanding through the creation of tangible and shareable artifacts (Kynigos, 2015). This process of
constructing physical or digital objects provides objects to “think with” that help learners externalize
and concretize theirmental models (Papert, 1980) while creating a foundation for classroom discussions
about intent and embedded meaning in graphs. These objects, whether physical manipulatives,
computer programs, or data visualizations, serve as cognitive artifacts that bridge the concrete and
abstract, enabling learners to externalize their thinking and make their reasoning visible to themselves
and others. In short, constructionist approaches may help researchers understand the cognitive and
pedagogical benefits associated with enabling students to author their own story of data visualization
through the creation of public entities or models as expressions of ideas (D’Ignazio & Bhargava, 2018;
Kynigos, 2015).

Central to constructionist practice is the concept of bricolage—a tinkering, experimental approach
where learners engage in iterative problem-solving by “rummaging in their bag of assorted tools to find
one that will fit the problem at hand” (Papert, 1993, p. 144). This emergent process mirrors authentic
mathematical and scientific practice, where solutions develop through experimentation and refinement
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rather than linear application of rules (Papert, 1991). In the case of data representation, this might refer
to students cycling through various visualizations in search of one that most appropriately addresses a
given statistical investigative question. AI-enhanced data visualization particularly supports bricolage
by enabling rapid experimentationwith different representational approaches, allowing students to try,
evaluate, and modify their visualizations based on emerging insights rather than constraining them to
predetermined analysis procedures.

1.3 AI as an Enabling Technology

The emergence of large-language models (LLMs) like ChatGPT presents a novel opportunity to
overcome the aforementioned barriers and support students’ development of DVL and MRC. With
the creation of a free account, students can upload datasets (.csv, .xlsx, .pdf, etc.) to ChatGPT and
prompt it in natural language to create a graph according to their specifications. Behind the scenes,
ChatGPT formulates code in a relevant programming language (e.g., Python, although it may select
other tools like React for more interactive visualizations) to parse the dataset and create the desired
visualization. Through natural-language conversation with ChatGPT, students can iteratively improve
their visualizations by adding and modifying graph styles, labels, trendlines, callouts, and other
customizations (“Generate a plot that shows the relationship between height and weight among males
and females with trendlines for both groups”). This simple interface allows students to focus on intent
and meaning in graphical representations, rather than the technical aspects of drawing or navigating
complex software.

Beyond technical efficiency, AI-enhanced visualization environments foster mathematical creativity
and student agency, two interdependent constructs that are critical for meaningful engagement
and learning in data visualization (diSessa, 2004; Kynigos, 2015). Representational creativity
enables students to think “outside of the box(plot),” (i.e., imagine representations that go beyond
traditional or static forms) while agency empowers them to perceive themselves as the creators of
mathematical/statistical knowledge, recognizing their ownership over the subject rather than relying
on prescriptions from instructors or textbooks. Experimenting with different visualization approaches
through natural language prompts engages students’ curiosity via open-ended exploration. This
creative liberty, previously stifled technical barriers and time constraints, transforms data visualization
from a procedural exercise into an authentic act of statistical activity in which students more actively
participate in representational practices (Bien & Mukherjee, 2025).

1.4 Justification & Research Goals

Our focus on secondary education (grades 6-12) is deliberate. This educational stage represents a
critical period for developing sophisticated data literacy skills as students have reached cognitive
development levels necessary for abstract reasoning about data relationships and face increasingly
complex data visualization tasks in mathematics, science, and social studies curricula (Twarek, 2024).
Secondary education presents a particular gap in available tools, as students have outgrown elementary
methods (e.g., by-hand construction or Microsoft Excel) but have not yet encountered or mastered
professional-grade visualization software (Frischemeier et al., 2021). This creates an “accessibility
valley” where meaningful data work becomes challenging precisely when curricular demands increase.
This work demonstrates the framework at a hypothetical level—its validation with real students will
be done in the future.

This paper offers a practitioner-focused framework for implementing AI-enhanced data visualization
activities in secondary classrooms. Rather than making empirical claims about effectiveness, we
provide a thoughtfully designed instructional approach based on constructionist principles, synthesis
of existing research, and practical classroom insights. Our goal is to equip educators with concrete
strategies for leveraging AI tools to make authentic data visualization experiences more accessible to
students across subject areas within secondary education.
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2 A Framework for AI-Enhanced Data Visualization Education Tasks
Some curricular approaches may separate the conceptual understanding of data from the technical
creation of visualizations due to the constraints of logistics. Our framework integrates these
dimensions through AI-mediated constructionist practices, overcoming these constraints. As
D’Ignazio and Bhargava (2018) argue, effective data visualization education requires not just technical
training but “creative data literacy”—the ability to critically engage with data through expressive,
meaningful representation.

The framework we propose leverages AI tools to resolve what Frischemeier et al. (2021) identify
as the central paradox of visualization education: students need to create visualizations to develop
and externalize their understanding of them, yet they lack the technical skills to create ones that
match their desired sophistication until they already possess considerable experience. By using
AI as an accessible mediator between conceptual understanding and technical implementation, we
create what Vygotsky might recognize as a “zone of proximal development” for visualization learning,
enabling students to engage in sophisticated visualization practices beyond what traditional tools
would elucidate (Vygotsky, 1978).

Figure 1
The Framework for AI-enhanced Literacy In Visualization Education (AILIVE)

Note: The AILIVE framework consists of five interconnected design principles implemented through three
phases of instruction.

2.1 Design Principles for AI-Enhanced Data Visualization Activities

Five interconnected principles guide this framework, each addressing specific challenges in
visualization education while leveraging constructionist approaches, summarized in Table 1.
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Table 1. Design Principles for AI-Enhanced Literacy in Visualization Education

Design Principle Preparation Phase Investigation Phase Synthesis &
Communication
Phase

Meaningful
Data Context

Select datasets with
personal or cultural
relevance to students;
connect to curriculum
or community issues; if
feasible,
student-generated

Guide students to
formulate questions
that matter to them;
emphasize real-world
implications

Encourage students to
connect findings to
similar or broader
contexts and
implications

Student Agency Provide options for
dataset selection when
possible; involve
students in planning

Allow student choice in
visualization
approaches and
questions to investigate

Support
student-directed
presentation formats,
aesthetics, and
communication
strategies

Communication
Intent

Introduce the concept
of visualization as
communication rather
than mere
representation

Prompt students to
articulate what they
want their
visualizations to reveal
and why

Focus on how
effectively
visualizations
communicate findings
to specific audiences

Iterative
Refinement

Model revision
processes with
examples; establish
iteration as expected

Structure multiple
cycles of visualization
creation and refinement
through AI
conversation

Compare iterations to
demonstrate growth in
understanding and
representation
sophistication

Collaborative
Discourse

Establish norms for
constructive feedback
and discussion

Implement structured
peer review and small
group analysis
conversations

Facilitate presentation
and critique sessions
that focus on multiple
interpretations

Meaningful Data Context addresses what Kjelvik and Schultheis (2019) term the “authenticity
gap” in data education. When visualization activities involve contrived or decontextualized datasets,
students perceive them as arbitrary exercises rather than meaningful inquiry. By engaging students
with data that connects to their lived experiences or addresses questions of community relevance,
visualization becomes purposeful investigation rather than technical exercise. This principle
operationalizes what one might call “hard fun”—challenging work that feels worthwhile because it
connects to authentic questions students care about.

Student Agency extends beyond mere technical choice to genuine intellectual ownership. Traditional
visualization assignments typically prescribe exactly what students should visualize and how, limiting
opportunities for the creative bricolage essential to constructionist learning. Our framework instead
positions students as decision-makers throughout the visualization process, from question formulation
through representation choices to interpretation. This shift transforms what Chang et al. (2024)
observe as often a passive, procedural activity into a creative, intellectually engaging act of knowledge
construction.
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Communication Intent reframes visualization from technical product to rhetorical act, recognizing
that visualizations serve as arguments about data relationships. This principle aligns with Börner et
al.’s (2019) finding that effective visualization literacy includes not just technical skill but rhetorical
awareness. By explicitly focusing students on what their visualizations are intended to communicate,
this principle foregrounds the representational decision-making that diSessa (2004) identifies as central
to metarepresentational competence.

Iterative Refinement challenges the linear, product-focused approach common in traditional
visualization instruction. As Donnelly-Hermosillo et al. (2020) note, professional data practice involves
continuous experimentation and revision, yet students rarely experience visualization as an iterative
process. The conversational interface of AI tools naturally supports this cyclical improvement even
under the limited time constraints of the typical secondary classroom, allowing students to quickly
implement changes, evaluate results, and refine their approach based on emergent understanding.

Collaborative Discourse recognizes visualization as a social practice that benefits from multiple
perspectives. Chang et al. (2024) found that peer discussion significantly enhanced students’
visualization abilities by exposing them to alternative approaches and forcing explicit articulation
of design rationales. This principle creates structured opportunities for community critique and
collaborative sense-making, developing what D’Ignazio and Bhargava (2018) consider essential social
dimensions of data literacy.

3 Implementation Structure: A Three-Phase Approach
The practical implementation of these principles follows a three-phase structure: preparation,
investigation, and lastly, synthesis and communication.

3.1 Preparation Phase: Establishing Foundations

To begin, teachers must thoughtfully select or create datasets that balance accessibility with
authenticity, i.e., provide genuinely student-relevant datasets that contain interesting patterns while
still being navigable for novice analysts. These might include class-generated data (surveys,
experimental results), public datasets with local relevance (community demographics, environmental
measurements), or curated subsets of larger datasets that maintain authenticity while reducing
complexity. Kaggle.com contains a repository of curated datasets, many of which are oriented towards
student use. Should time constraints be of extra concern, ChatGPT can also locate datasets from the
internet (e.g., reported UFO sightings by state) to prompt more open exploration and visualization
creation.

Secondary students will require orientation to the fundamentals of both data concepts and AI
interaction. Unlike traditional software training focused on interface navigation, the warm-up
orientation lesson should emphasize conceptual understanding of data types, relationships, and
visualization principles. Students practice conversational data exploration through guided examples,
developing preliminary visualization reasoning, the ability to reason about what visualization
approaches might best reveal particular data patterns. For instance, students might compare the
merits of parallel boxplots versus multiple histograms for comparing the distribution of salaries across
professional sports leagues.

This phase also should include discussion about essential ethical norms around both AI use and
data interpretation. Students discuss limitations of AI-generated visualizations and consider broader
questions of data ethics, including representation biases, appropriate attribution, and critical evaluation
of sources. These discussions provide what D’Ignazio and Bhargava (2018) consider crucial context for
responsible data practice.
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3.2 Investigation Phase: Guided Exploration and Creation

The investigation phase forms the core learning experience, with three essential components:
dataset exploration, visualization creation, and collaborative analysis. During dataset exploration,
students develop familiarity with specific data through exploratory data analysis while formulating
increasingly sophisticated investigative questions. Teachers scaffold this process by modeling question
development that moves from description (“What value might be considered ‘typical’ for this
variable?”) to relationship investigation (“How do these variables relate?”) to pattern identification
(“Are there distinct clusters or trends over time or among different groups?”).

The visualization creation component leverages AI tools through conversational interaction, allowing
students to focus on representational decisions rather than technical implementation. Through natural
language requests, students can rapidly experiment with different visualization types, exploring what
Angra and Gardner (2017) term the “problem space” of possible representations. Teachers should
encourage students to ask the LLM “Are there any other visualizations that might be appropriate for
investigating this question/relationship?” to compare a variety of possible graphs.

The collaborative analysis component extends individual creation to social knowledge construction
through structured small-group discussion and peer review. Students encounter their peers’
visualization approaches, learn to recognize consequences of representation choices, and develop
evaluation and communication skills as they rationalize and critique their choices for their displays.
This collaboration is an essential social dimension of constructionist learning, where knowledge
artifacts gain meaning through interaction.

3.3 Synthesis and Communication Phase: Consolidating Understanding

The final phase goes beyond the exploratory investigation to formal knowledge communication,
connecting the students’ visualization insights to real statistical questions. This externalization serves
what might be considered a fundamental purpose of constructionist learning: creating “objects to think
with” that bridge concrete and abstract understanding, particularly among a group of reflective and
critical consumers. The reflective dimension is especially important as students articulate how their
understanding evolved through the visualization process and share their formal artifacts, completing
their journey into becoming practicing data scientists.

4 Assessment Considerations
When AI tools handle technical implementation, educators must assess student conceptual
understanding, communication effectiveness, and process sophistication. Our AILIVE approach
proposes formative assessment by making thinking visible throughout the process, looking at student
prompt iteration logs, and small group discussions that reveal developing metarepresentational
competence.

Summative assessment balances product evaluation with process documentation through visualization
portfolios, data story presentations, and written analyses that demonstrate interpretive sophistication.
The project presentation at the end of the task should be presented with a rubric emphasizing
appropriateness of visualization choices for specific questions, clarity of visual elements, quality of
interpretation, sophistication of iterative development, and depth of reflection on representational
decisions.

This assessment approach aligns with educational standards across domains, supporting mathematics
standards related to data representation, science practices of analysis and communication, and digital
literacy standards for computational thinking and creative communication. Students need to oversee
and manage technical implementation in case the AI tool generates something invalid or meaningless,
so need to understand what to do at a conceptual and process level. With AI handling the technical
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mechanics, assessing the conceptual and communicative dimensions of visualization recognizes what
truly matters in developing visualization literacy.

By thoughtfully implementing this framework, educators can transform how secondary students
engage with data representation—shifting from technical struggles to meaningful knowledge
construction. The following section illustrates this approach through a detailed classroom example
that brings these principles to life.

5 The Snackdown Challenge: A Detailed Example of AILIVE
In the Snackdown Challenge, students conduct statistical investigations using the guiding question,
“What factors predict how our class will like different kinds of snacks?” (see Figure 2). The
teacher starts by distributing different snacks to the class for students to rate them based on
attributes like crunchiness, saltiness, sweetness, healthiness, and overall appeal. The students enter
their ratings on a shared data sheet, then break into small groups to collaboratively analyze the
dataset. The teacher can help them upload the dataset file to ChatGPT and get started asking
questions. This activity exemplifies all five AILIVE Framework principles: it establishes meaningful
data context through personally relevant experiences, supports student agency in investigation design,
emphasizes communication intent through purposeful visualization, enables iterative refinement
through AI-supported experimentation, and incorporates collaborative discourse through structured
peer feedback.

5.1 Snackdown Implementation Phase 1: Preparing to Explore

Teachers will prepare by gathering 8-10 different snack options with varying characteristics (e.g., fruit
snacks, pretzels, chocolate bars, etc.), then create a simple rating form with attributes including overall
preference, sweetness, saltiness, crunchiness, and healthiness perception (1-5 scale). They will also
need to set up a shared spreadsheet template for compiling class data, ensure ChatGPT access (through
individual accounts or shared classroom devices), and practice with example prompts that demonstrate
effective AI interaction so they can assist students as needed. An artificial example of the dataset can be
found at https://doi.org/10.5281/zenodo.17272844. The use of a personally relevant and understandable
dataset supports students’ clarity of intention when curating data visualizations.

To orient the students, teachers should introduce basic data concepts (variables, relationships,
correlation) through standard pedagogy. They should then guide the students through discussion
of different visualization types and their purposes, then have them practice simple AI interactions
with sample data. Classroom norms around collaboration and ethical norms around AI use should be
established.

5.2 Snackdown Implementation Phase 2: Investigation

To create the shared dataset, have students taste and rate each snack individually, then record
their ratings in a shared spreadsheet (a Google Forms survey’s responses can be converted into a
ChatGPT-ready .csv file). Students can then examine the dataset structure and variables using visual
inspection and discuss the dataset in small groups, developing investigative questions such as “Which
factors best predict overall preference ratings?” or “Do perceptions of healthiness affect preference
ratings?” Have the groups document their initial hypotheses before proceeding. Non-standard graph
inspiration can also be offloaded to ChatGPT with prompts such as “How can I visualize all of the
characteristics of a given snack at once?” leading to the creation of a spider/radar chart, or “Are crunchy
snacks usually more salty than sweet?” leading to a comparison of parallel boxplots.
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Figure 2
Implementation at-a-glance: A practical guide to implementing the AILIVE framework in secondary
classrooms

Remember the 5 AILIVE Principles: Meaningful Data Context, Student Agency,
Communication Intent, Iterative Refinement, Collaborative Discourse (see Figure 1).

Before Class: Consider Dataset & Context, Technology, Instruction

1. Decide whether to provide data or collect data: (a.) If providing data, select a dataset
with personal/cultural relevance to students (b.) If generating data, prepare data collection
materials or plan

2. Identify 2-3 investigative questions to seed student thinking
3. Verify access to ChatGPT or other GenAI (e.g., Claude)
4. Set up shared digital workspace (e.g., Google Drive, or school’s LearningManagement System)
5. Test dataset upload and basic visualization prompts yourself
6. Create sample prompts reference sheet
7. Develop assessment rubric (graph appropriateness, clarity, interpretation, iteration)
8. Prepare discussion questions about data limitations and AI ethics

Phase 1: Setting the Stage (1 class period, 45-50 min)

1. Introduce data vocabulary (variables, types, relationships) and exemplify a few different graph
types (histograms, bar charts, boxplots, scatterplots)

2. Demonstrate ChatGPT/AI interaction with sample dataset
3. Establish norms for AI use and collaboration
4. AI ethics and limitations discussion (privacy, risks of over-reliance, hallucination)

Phase 2: The Investigation Begins (2 class periods, 90-100 min)

1. Help students to conduct data collection or provide dataset
2. Guide students in formulating questions about their data and uploading their dataset to

AI/ChatGPT for visualization
3. Structured peer feedback (gallery walk, pair shares)
4. Round 2! Try different graph types and have a second round of peer feedback
5. Don’t let students settle for first visualization
6. Encourage them to read the Python code that underlies the visualizations
7. Make sure students document prompts

Phase 3: Science Synthesis & Communication (2 class periods, 90-100 min)

1. Have student groups present analyses and explain their results and thinking
2. After group presentations, discuss data limitations, biases, and AI issues
3. Collect written reflections
4. Have a final AI limitations and ethics discussion

Students then proceed to work in their small groups with ChatGPT, leveraging its natural language
interface to create and refine visualizations. The following is a typical dialogue demonstrating how
students can interact with ChatGPT, highlighting iterative refinement. For student privacy purposes
this is simulated but typical of student work.
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Student-ChatGPT Dialogue Example

Student: [Student uploads CSV file] Check out this data. we think crunchy snacks are
gonna be most popular. make a graph?

ChatGPT: Here’s the graph: it shows the average crunchiness score per snack across all
students.

Student: Oops that just shows how crunchy things are… what about how much people
like them? How canwe see the relationship between crunch and howmuchwe like them?

ChatGPT: Here’s the comparison: X-axis: Crunchiness score and Y-axis: Popularity
(average preference score). Snacks in the upper-right corner are both crunchy and
popular (chips, popcorn, granola bars). Meanwhile, sweeter/softer snacks (like chocolate
or gummies) lean lower on crunch but can still have decent popularity.

Student: Wait, but some sweet things are popular… how could we tell which is more
popular then, sweet things or crunchy things? Also why did you start the y-axis at 5.5,
that’s weird.
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ChatGPT:Good call-out, I made the graph that way so it wouldn’t compress the data and
you could see it clearly. Here’s a side-by-side trendline view: Crunchiness vs Popularity
(left): upward slope→ the crunchier the snack, themore popular it tends to be. Sweetness
vs Popularity (right): downward slope→very sweet snacks actually lose popularity, with
moderate sweetness doing better.

Student: Those lines seem very strong, that’s kind of surprising. Canwe show how likely
it is that people’s taste falls along those lines somehow?

ChatGPT: That’s a smart observation! The line shows the general trend, but not
everyone’s taste fits it perfectly. See these dotted lines? They show how far each
snack is from what the trend predicts. Some snacks, like Granola Bars, are higher than
expected—people like them more than their crunch alone explains. Others, like Pretzels,
fall lower. So the line is like an average direction of taste, but the spread around it shows
that people’s preferences are still unique. [Iterative refinements continue]

Once students have generated visualizations, they discuss their graphs and interpretations in small
groups, and do a gallery walk to see other approaches to the same dataset. Structured peer
review can help develop critical awareness of the strengths and limitations of different visualization
approaches. Importantly, teachers should prompt students to consider whether the visualizations
support conclusions about the data. Students should submit their prompting iterations, and write
reflections on their own and others’ visualizations strengths and weaknesses.

5.3 Snackdown Implementation Phase 3: Synthesis and Communication

In the last phase, students attempt a formal analysis of the questions they posed in phase 1, connecting
their findings to their original hypotheses, then take turns presenting their reports to the class. The
teacher should lead the class discussion of interpretation to highlight the power of statistical analysis
but also the limitations of analysis (sample size, subjective ratings, etc.). The class should also discuss
potential biases or limitations in their analyses, including any biases of the LLM (e.g., to doggedly
obey the user’s perhaps infeasible prompt), and share their prompt sequence that led to class favorite
visualizations. Our prompt and sample dataset are available in Appendix A.

6 AI Ethics & Accessibility Concerns
Although our framework lowers technical barriers to data visualization, equity concerns remain. For
instance, students may enter with very different levels of comfort interacting with ChatGPT: some
may quickly generate effective prompts based on ample prior experience, while others may struggle
to “speak the language” of the tool (i.e., address it productively, and with enough context). This can
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affect participation even when all students have equal access to devices and internet in the classroom.
Teachers can help balance this by modeling example prompts, encouraging group work, and framing
missteps as opportunities to learn how to communicate more effectively with AI. Another important
equity consideration is the choice of data. While our Snackdown Challenge uses a playful, low-stakes
dataset, educators should be cautious when bringing in more substantial real-world data. External
or anonymous datasets are preferable to those that may contain personal or identifying information.
For example, students should not upload class rosters, individual survey responses with names, or
sensitive demographic information into ChatGPT. Instead, class activities should focus on datasets that
are public, anonymous, or generated collectively in ways that avoid connecting data back to individual
students.

Bias and representation are also relevant when students explore data through AI. Because ChatGPT
generates code and interpretations based on patterns in its training data, it can reproduce existing
biases or provide oversimplified answers. In the Snackdown Challenge, this might look like the AI
suggesting stereotypical interpretations (e.g., assuming girls prefer sweeter snacks or boys prefer salty
ones) if prompted in certain ways. More generally, students may accept AI-generated visualizations
as authoritative even when the choices are misleading—for instance, defaulting to a bar chart when
a boxplot would better represent the variability in preferences, or using inappropriate scales for
axes. Teachers can help students recognize these risks by encouraging critical discussion of multiple
visualization options, asking “What does this graph highlight? What does it hide?” and foregrounding
the idea that every graph is a rhetorical choice, not a neutral fact. Embedding these reflective practices
ensures that AI use in the classroom builds not only data visualization literacy but also awareness of
fairness, representation, and responsible data practice.

7 Reflection on Educational Impact
The introduction of new technologies in education, such as calculators, has historically been met with
mixed reactions, including concerns about potential negative effects and overreliance (Ellis & Slade,
2023). However, technologies like calculators, WolframAlpha, and Wikipedia, initially controversial,
are now commonly used learning tools. Graphing technologies, specifically, can impact K-12 student
learning and are vital for learning, technical occupations, and public discourse, helping to visualize
large amounts of data to reveal patterns (Donnelly-Hermosillio et al., 2020). This historical perspective
provides context for the introduction of new tools like AI and advanced data visualization techniques
in the classroom by marking them as tools that boost accessibility rather than crutches that undermine
interest and effort. By enabling students to focus on conceptual understanding rather than technical
execution, AI-enhanced visualization activities significantly lower barriers to authentic data practice.
This accessibility democratizes data literacy development, particularly benefiting students who might
otherwise be excluded from meaningful data work due to technical hurdles. Still, we don’t suggest
that AI tools entirely replace eventually training students with professional statistical software;
rather, we assert LLMs (specifically, ChatGPT) as a reliable and accessible tool for meeting secondary
students’ representational creativity (i.e., their MRC) with powerful interpretive visualization. While
we recognize that students will eventually need to transition to professional statistical software for
advanced analysis and direct manipulation, our framework targets the critical secondary education
period where students are developing foundational concepts about data relationships and visual
representation. At this stage, removing technical barriers through AI assistance allows students to
focus on building the conceptual understanding and statistical reasoning that will serve them well
when they later encounter more sophisticated analytical environments.

AI and LLMs hold significant potential for transforming education, particularly in optimizing cognitive
load and enhancing personalized learning. A systematic review of 103 educational AI implementations
found that AI-based interventions can “significantly enhance student performance and knowledge
retention” (Gkintoni et al., 2025, p. 2). Improved learning efficacy is the most frequently reported
outcome in research on AI/ML applications in education, closely followed by enhanced personalization
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(p. 2). AI tools like ChatGPT can also be leveraged by instructors, potentially generating general
ideas for educator-developed materials as instructors engage with LLMs’ in-depth responses (Ellis &
Slade, 2023). They can also aid in generating visuals, such as math diagrams using vector graphics,
which are essential for mathematical thinking and problem-solving (Lee et al., 2025). However, it’s
important to acknowledge the concerns surrounding AI use, including the potential for plagiarism,
impacts on academic integrity, challenges to independent thinking, algorithmic bias, data privacy,
equity, and accessibility (Gkintoni et al., 2025). Training students to use these tools responsibly and
to think critically about AI-generated responses is a crucial aspect. A balance in human-machine
interaction is needed to ensure AI complements, rather than replaces, human educator roles, and to
avoid potential erosion of critical thinking, creativity, and collaboration skills. The AILIVE framework
capitalizes on these compelling educational benefits while acknowledging important considerations
for implementation.

Research highlights the importance of metacognition during the data visualization process (Chang
et al., 2024; diSessa & Sherin, 2000). This involves processes like self-questioning, monitoring, and
reflecting, and specific “metavisual strategies” such as focusing (staying goal-oriented), perfecting
(identifying flaws and improving), inducting, resourcing, and deducing (Chang et al., p. 15).
Developing these skills and habits of mind in students might ostensibly bolster their quantitative
reasoning for classes and problems beyond data science (Angra & Gardner, 2017). Integrating these
strategies into instruction can help students simultaneously develop DVL and MRC, as some studies
(e.g., Chang et al., 2024) found that students who relied only on non-metavisual strategies (e.g.,
personal preference for a graph, or apparent trial-and-error) showed limitations in constructing
visualizations and using them for reasoning. Developing metarepresentational competence, which
includes understanding how representations work and being able to generate and judge alternatives, is
considered important for a deeper understanding and can be fostered through engagements with LLMs,
their peers, or a classroom discussion. Encouraging students to reflect critically on the affordances
and limitations of the representations they choose is crucial (Angra & Gardner, 2017; diSessa & Sherin,
2000).

Our framework is based on constructionist principles, which help ground the introduction of new
technologies into learning settings without solely focusing on the technology itself (D’Ignazio &
Bhargava, 2018). It emphasizes socially empowering approaches to learning and sees designing
representations as a way to cultivate MRC. Leveraging AI for data exploration, framed within
a constructionist approach, aims to move beyond tool- and product-focused instruction towards
fostering deeper learning in data science. This exercise supports students’ data visualization literacy
as they critically interpret and refine communicable graphs. Future research should examine how
this approach impacts student visualization literacy development longitudinally and how effectively
it transfers to independent visualization competencies. As AI visualization tools continue to evolve,
education must balance leveraging their affordances while ensuring students develop fundamental
conceptual understanding that transcends specific technological implementations. Note that our
citations also follow APA 7 style (both inline and end-of-paper references). Since our articles are
relatively short, we opt to hard code the references rather than use BibTeX. You’re welcome to use
BibTeX, but you’ll need to do some work to make that happen! :)
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Appendix A. Snackdown Challenge Implementation Details
In the Snack Showdown task, students begin by collecting their own data on snack preferences.
Working in small groups, they sample a variety of snacks and rate them based on attributes like
crunchiness, saltiness, sweetness, healthiness, and overall appeal. Once the data is gathered, students
input their ratings into a shared dataset, setting the stage for collaborative analysis.

The following includes example prompts showing how students can generate visualizations to explore
relationships within the data, such as how sweetness impacts overall satisfaction or whether healthier
snacks tend to be rated lower or higher.

Example Student-ChatGPT Dialogue

Student: “analyze this data and show me descriptive statistics”

extbfChatGPT:

# Calculate descriptive statistics for the numerical columns
descriptive_stats = data.describe()

# Display the statistics
import ace_tools as tools;
tools.display_dataframe_to_user(name="Descriptive Statistics of

Snack Ratings", dataframe=descriptive_stats)

Overall Crunch Salty Sweetness Healthiness

count 160 160 160 160 160
mean 5.08 4.49 4.91 5.75 5.04
std 1.77 2.68 3.04 3.29 2.80
min 1 1 1 1 1
25% 4 2 2 2.75 3
50% 5 5 5 6 5
75% 6 6 7 9 7
max 9 10 10 10 10

As students analyze scatterplots, regression lines, and summary statistics, they interpret patterns and
critically reflect on howwell their models explain the preferences. By the end of the task, they’ll discuss
the strengths and limitations of their data and models, gaining valuable insights into both the technical
and interpretive aspects of data-driven decision-making.

Student: show scatterplots of crunch, salty, sweet, healthy vs overall rating

extbfChatGPT:

import matplotlib.pyplot as plt

# Define numerical columns to plot against 'Overall'
columns_to_plot = ['Crunch', 'Salty', 'Sweetness', 'Healthiness']

# Create scatterplots
for column in columns_to_plot:

plt.figure(figsize=(6, 4))
plt.scatter(data[column], data['Overall'], alpha=0.6,

edgecolor='k')
plt.title(f'Scatterplot of {column} vs. Overall Rating')
plt.xlabel(column)
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plt.ylabel('Overall Rating')
plt.grid(True)
plt.show()

[Scatterplot visualizations generated]

Student: interesting, now include line of best fit in those

extbfChatGPT:

import numpy as np

# Create scatterplots with lines of best fit
for column in columns_to_plot:

plt.figure(figsize=(6, 4))

# Scatter plot
plt.scatter(data[column], data['Overall'], alpha=0.6,

edgecolor='k', label='Data Points')

# Fit line of best fit
m, b = np.polyfit(data[column], data['Overall'], 1)
plt.plot(data[column], m * data[column] + b, color='red',

label='Best Fit Line', linewidth=2)

# Add labels and title
plt.title(f'Scatterplot of {column} vs. Overall Rating

with Best Fit Line')
plt.xlabel(column)
plt.ylabel('Overall Rating')
plt.legend()
plt.grid(True)
plt.show()

[Updated scatterplots with regression lines generated]

Here are the updated scatterplots, nowwith the lines of best fit included in red. If you’d like to interpret
any of the correlations or need regression coefficients, feel free to let me know!

Student: yes include the regression equation. also can you draw the graphs in a pretty way? they’re
kind of ugly

ChatGPT:

import seaborn as sns

# Set aesthetic style for plots
sns.set_style("whitegrid")
plt.rcParams.update({'axes.titlesize': 14, 'axes.labelsize': 12,

'legend.fontsize': 10})

# Create scatterplots with regression lines and equations
for column in columns_to_plot:

# Scatter plot and regression line
plt.figure(figsize=(8, 6))
sns.regplot(x=data[column], y=data['Overall'],

scatter_kws={'s': 70, 'alpha': 0.6},
line_kws={'color': 'red'})
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# Fit the line and compute regression equation
m, b = np.polyfit(data[column], data['Overall'], 1)
equation_text = f'Overall = {m:.2f} × {column} + {b:.2f}'

# Annotate regression equation
plt.annotate(equation_text, xy=(0.05, 0.95),

xycoords='axes fraction', ha='left', va='top',
fontsize=10, bbox=dict(boxstyle="round,pad=0.3",
edgecolor='gray', facecolor='white'))

# Labels and title
plt.title(f'Relationship Between {column} and Overall Rating')
plt.xlabel(column)
plt.ylabel('Overall Rating')
plt.show()

extit[Enhanced scatterplots with regression equations generated]

Sample Student Reflection

After discussing the graphs with other students, each student should write a reflection on their
experience. Here is an artificial example:

Snackdown Challenge Reflection
By: Jordan T. (9th Grade)

The Snackdown Challenge was actually a lot more fun than I thought it would be. At first, I thought
it was just going to be another boring graph assignment, but getting to taste snacks and then build
charts from our own data made it way more real and interesting.

For my own visualization, I made a scatterplot comparing how crunchy each snack was to how much
people liked it overall. One thing I think I did well was using different colors for male and female
students—it made it easier to see if gender had anything to do with how much people liked snacks. I
also added a line of best fit, which made me realize that crunchiness didn’t always mean tastier. That
surprised me.

Aweakness in mine, though, was that it looked kind of cluttered. I think I had toomany points jammed
together and I forgot to make the font bigger on the labels. Some people told me they couldn’t read it
unless they squinted, which I guess isn’t great.

When I looked at other students’ graphs, I saw some really cool stuff. One person made a bar chart
showing average preference by snack type, and they used emojis for each snack! That made it really
fun to look at, and honestly I wish I had thought of that. Another person’s graph had awesome colors
and labels, but it was missing a title, so I didn’t know what I was looking at at first. Also, a few people
didn’t add a key, so it was hard to know what the colors or shapes meant.

Something we talked about in class that stuck with me was how graphs can make you believe
something that isn’t true, if they’re not made well. Like one graph made it seem like granola bars
were everyone’s favorite, but when you looked closer, it was only two students that rated them super
high. That made me realize how easy it is to mess up how data looks, even if you don’t mean to.

Overall, I think I learned a lot—not just about how to make graphs, but also how to read them better.
Next time, I want to try something with a cleaner layout and maybe try using some more creative
elements like emojis or icons. And I definitely want to double-check that people can actually read the
thing.
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