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Abstract

We use a Desmos simulation of a dartboard game to engage middle school students in
geometric probability, the concept of randomness, and proportional reasoning to help
them connect experimental probability to theoretical probability.
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The Common Core State Standards for Mathematics (CCSSI, 2010) emphasize probability in Grade
7. According to the standards, students must be able to “investigate chance processes and develop,
use, and evaluate probability models” (p. 50). Moreover, students should be able to link experimental
probability to theoretical probability and be able to “compare probabilities from a model to observe
frequencies” (CCSSI, 2010, p. 51).

To link theoretical and experimental probability in the minds of middle school students, we engage
them in a conjecture-simulation feedback loop to develop critical concepts prior to theoretical
calculation. We first ask them to make a conjecture about a probability value within the setting of
a dartboard game and then engage them in a simulation to test their conjecture. Next, we repeat the
process multiple times, each time giving them an opportunity to revise their conjecture followed by
another simulation. In this way, we allow students to learn the rules of the dartboard game while
forming their understanding of the meaning of a random event and related probability concepts. We
do this because “effective teaching of mathematics builds fluency with procedures on a foundation
of conceptual understanding” (NCTM, 2014, p. 10). The result is students who understand both the
context of the activity and key probability concepts as a basis for engaging in meaningful theoretical
probability calculations.

Like Bloom, Kurz, and Yanik (2020), we connect experimental and theoretical probability using a
contextual situation. Whereas Bloom and colleagues employ mathematical modeling, that is, using
mathematics to shed light on a real-world situation; we engage students in modeling mathematics, using
a realistic situation—a dartboard game—to develop understanding of a mathematical topic—geometric
probability (Felton-Koestler, 2017).

1 The Dartboard Activity

To engage students in a virtual game of darts, we created a series of simulations in Desmos. We
encourage you to use the following link to explore the activity:

https://teacher.desmos.com/activitybuilder/custom/60ca0b8034947b5c5aa2f6d0

The link includes a teacher’s guide with a checklist and a place to write notes during the student
engagement. This activity is designed for two days.
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1.1 Purpose of the Two-Day Structure

Day 1 focuses on experimental probability through conjecturing and simulation, allowing students
to surface misconceptions and notice variability in results. Reflection between days centers on why
outcomes differ and what stabilizes as trials increase. Day 2 builds on this experience by introducing
theoretical probability through area, positioning it as an explanation for the experimental results rather
than a standalone formula. Below we will walk you through the activity. Along the way, we share
screenshots from this activity.

1.2 Guessing, Checking, and Revising

Figure 1 shows a color-coded dartboard that serves as the basis for this activity. The dartboard has
regions labeled 0, 1, and 2, colored white and orange. Students are told that the dartboard in this
activity is not like a normal dartboard that they might know: The dart will always land on the board,
but where it lands will be completely random. If the dart lands within region 0, 1, or 2, the player wins
0, 1, or 2 free games, respectively.

Figure 1
Color-coded dartboard.

First, based only on observing the dartboard (Fig. 2a), students are asked to use a slider to show their
guess of how likely they are to win a game. Then, they get to compare their guesses with the rest of
the class, as shown in Figure 2b.

Figure 2
Guessing the probability of winning a game and comparing with the rest of the class.

Certain to win Certain to win

Probably win Probably win|

Equally likely; E lly likel
to win or not win P 2 0 ‘ﬂ to wiﬁf: r}lto; \:iz

Probably NOT win Probably NOT win

Certain to NOT win Certain to NOT win

@) (b)

Next, the teacher engages the students in a discussion of how they made their guesses and why. This
discussion will help students to understand terms such as probably, equally likely, certain, and random.
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Understanding these terms will prepare the students for the next two phases of the activities (i.e.,
experimental and theoretical probabilities).

As the activity continues, students simulate throwing one dart, 10 times, with the results being recorded
in a table. Each student repeats this process three times. A typical table of results is shown in Figure 3.

Figure 3
Simulating 10 single attempts and recording the results in table.

Thirow Score Free game?

X

B B

X X BB BB X

Next, as shown in Figure 4, students are given an opportunity to revise their guesses made at the
beginning of the activity. The Desmos simulations provide data to inform the students’ decisions
about the probability of winning free games.

Figure 4
Revising the initial guess after engaging in repeated simulations.
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Probably win
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Probably NOT win
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The students then engage in two additional simulations: throwing 50 darts at a time and throwing
1000 darts at a time. As before, the results are automatically displayed, but this time using a bar chart,
as shown in Figure 5.
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Figure 5
Simulating 1000 random dart throws.

Let's simulate throwing 1000 darts.

Throw 1000 darts

393 403

204

0 1 2
Free games won

After students complete the simulations of 50 and 1000 attempts, they are asked to find the fraction
for winning 0, 1, and 2 games, as shown in Figure 6. That is, they are asked for the experimental
probabilities of these events.

Figure 6
Finding the experimental probability.

How often do you win or not win with 1000 dart throws?

Be certain the fractions you enter add up to 1!
When throwing 1000 darts, for approximately what

393

fraction of the dart throws do you NOT win a game? 1000 =0.393
When throwing 1000 darts, for approximately what 103
fraction of the dart throws do you win 1 game? 1000 0.403
When throwing 1000 darts, for approximately what 204
fraction of the dart throws do you win 2 games? 1000 =0.204

# Edit my response

Then, students compare their findings with the rest of the class, as shown in Figure 7. Here, the
teacher can orchestrate a reflection discussion, asking, for example: What have you learned? Will all
simulations yield the same results? Why do the answers vary? By doing so, students will be able to
deepen their understanding of experimental probability. Because the results are based on attempts,
there is not a one correct answer; however, the answers will be close. After the students complete
the experimental probability portion of the activity on Day 1, the next day they will calculate the
theoretical probabilities for the same events.
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Figure 7
Comparing experimental probability findings with the rest of the class.

These are the results for your class.

0.5 0.5 0.5

0 0 0
0 1 2

Games won

2 Theoretical Probability

At this stage, students find the theoretical probability of winning 0 games, 1 game, and 2 games.
Students make sense of the geometric regions within the dartboard. They define the regions in terms of
the circles in the dartboard and find the outer and inner areas, region areas, and then the probabilities
of the dart landing within the various regions.

Figures 8-10 provide an example of how to compute the theoretical probability of winning 1 free
game. When students record their findings for the outer area, the inner area, the area of the region
(the difference), and the theoretical probability, Desmos helps them to self-evaluate their responses
by providing a green mark if the answer is correct or a red X if the answer is not, as shown in
the table included in Figures 8 and 9. In addition, students will be able to compare their findings
from the experimental probability for the same event based on the simulation of throwing 1000 darts.
This comparison provides insight to the students about the relationship between experimental and
theoretical probability. Understanding this relationship is a key foundation for work in statistics
(Langrall et al., 2017).
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Figure 8
Finding the area of the dartboard.

Calculating Theoretical Probabilities

To calculate the theoretical probabilities, it would be
helpful to know the size of the dartboard and the sizes
of the various regions on the dartboard. The radius of
the entire dartboard is 8 units. Furthermore, each strip
on the dartboard is 2 units wide.

The theoretical probability of landing in a particular area
of the dartboard is the proportion of the entire dartboard
area that is covered by the particular area of interest.

Let's begin by computing the area of the entire
dartboard. The dartboard is a circular region, and recall
that the area enclose by a circle is given by the formula

A= mﬂ2 . You can express this area in terms of m or as
a decimal rounded to the nearest hundredth.

Area of dartboard 201.06

Figure 9
Finding the area of outer region 1.

Calculating Theoretical Probabilities

You have calculated the area of the entire dartboard
and the area of the inner () region, which were both
circle regions. Next, we need to learn how to calculate
the area of the outer 1 region, which is not a circle, but
is an annulus.

Computing the area of an annulus is illustrated in the
animation at left by calculate the area of the outer circle
of the annulus and subtracting the area of the inner
circle of the annulus.

Let R be the radius of the outer circle and r be the
radius of the inner circle. The area of the annulus is

given by the formula 4 = R — m‘z, or equivalently,
A= ‘n:(R2 - r2) . You may express your answer in

terms of ® or as a decimal rounded to the nearest
hundredth.

Area of outer region - o7 =
1 87.97 .

Area of inner region
0

Area of dartboard 201.06
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Figure 10
Computing theoretical probability and comparing it to experimental probability.

Calculating Theoretical Probabilities: Region 1.

The theoretical probability of landing in region 1 is the
proportion of the area of the entire dartboard covered
by region 1. This can be computed by taking the area of
region 1 and dividing it by the area of the entire

Area of region 2 dartboard.

Area of region 1 87.97

Area of outer region 0

Area of inner region 0 Enter the theoretical probability of landing in region 1
below. Please enter your answer as a decimal rounded

Area of dartboard 201.06
i to the nearest hundredth.

437

Based upon the simulation of 1000 dart throws, you
estimated the experimental probablity of winning 1 free
game to be 0.403. How does your calculation of the
theoretical probability compare to the simulation results?

My calculation was slightly lower than the actual results. |
estimated that it would be around 40.2%, and the results came
out to be 43.7%.

# Edit my response

To close the activity, the teacher can orchestrate a final discussion on the relationship between
experimental and theoretical probability. Wheeler and Champion (2016) stated that “experimental
probability values determined by a small number of trials are expected to vary more widely from
theoretical probabilities than experimental probability values determined by a larger number of trials”
(p- 337). This is an important takeaway from this activity.

3 Implementation Notes

The dartboard activity was piloted with seventh-grade students during instruction focused on
probability concepts, including randomness, experimental probability, and theoretical probability.
The lesson was implemented over two class periods. The first day emphasized conjecturing and
experimental probability through repeated simulations, while the second day focused on theoretical
probability using geometric area. Students worked individually during initial conjectures before
engaging in whole-class discussion, allowing authentic intuitions and misconceptions to surface prior
to refinement.

During the conjecture and early simulation phases, students relied heavily on visual intuition and
symmetry. A common misconception was that randomness implies equal likelihood, with several
students arguing that outcomes should be “the same” because the dartboard could be “cut in half”
Other students initially used additive reasoning, focusing on the number of regions or colors rather
than their relative areas. As students engaged in simulations of 10, 30, and larger numbers of trials, their
reasoning began to shift toward frequency-based and proportional reasoning. For example, students
justified revised conjectures using statements such as winning “more than half” of the trials, while
also noting that results varied across simulations. These observations created natural opportunities to
discuss variability and the role of sample size in experimental probability.

Later discussions revealed important progress in students’ understanding of randomness and
independence. Students debated whether a sequence of wins would influence future outcomes, initially
suggesting that prior results might affect subsequent trials. Through guided discussion, students
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articulated that each dart throw is independent and that previous outcomes do not determine future
results in a random process. Informal indicators of learning included students revising conjectures
based on simulation data, distinguishing between experimental and theoretical probability, and
reasoning about independence, area, and relative frequency. Teachers implementing this activity
should plan time for discussion after each simulation phase and anticipate misconceptions related to
symmetry, equal likelihood, and the influence of prior outcomes.

Although student work during the theoretical probability phase was not formally recorded, our
experience implementing this activity with preservice teachers suggests that students may struggle
with applying the area formula for circles and annuli. In prior implementations, preservice teachers
often needed additional support connecting the formula for the area of a circle to the geometric
structure of the dartboard, particularly when reasoning about the difference of areas. Teachers
implementing this activity with middle or early secondary students may therefore consider reviewing
area formulas in advance, providing visual scaffolds, or allowing students to estimate relative areas
before computing exact values.

4 Practical Classroom Guidance and Discussion Support

This activity is flexible and can be implemented across a range of classroom contexts. When individual
devices are available, students can engage directly with the Desmos simulations independently or
in pairs. In classrooms with limited technology, the simulations can be projected and run as a
whole-class experience, with students recording results, making predictions, and discussing outcomes
collectively. Small-group setups using shared devices also work well, particularly during the conjecture
and simulation phases.

During early simulations, students often rely on visual intuition or symmetry and may attribute
differences in results to luck, balance, or skill. Teachers should plan regular discussion pauses after each
simulation phase to surface these ideas and press students to justify their reasoning using observed
frequencies. Prompts such as Why didn’t everyone get the same results?, What changes as the number of
trials increases?, and Does a previous win affect the next outcome? help students distinguish randomness
from fairness and develop an understanding of independence.

As students transition to theoretical probability, some may need additional support connecting area
formulas to probability. Based on prior implementations with preservice teachers, students may
struggle with applying the area formula for circles and annuli or with reasoning proportionally about
regions. Teachers can scaffold this phase by reviewing area formulas in advance, providing visual
representations of regions, or allowing students to estimate relative areas before computing exact
values. Formative checkpoints include asking students to explain why one outcome is more likely
than another, compare experimental and theoretical results, or predict how increasing the number of
trials would affect outcomes.

For students ready to extend their thinking, teachers may invite students to design their own
dartboards, modify region shapes, or experiment with alternate geometric configurations. These
extensions deepen understanding of geometric probability while reinforcing proportional reasoning.

5 Conclusion

The dartboard activity connects experimental and theoretical probability within a geometric setting. It
helps students to understand how these two types of probability are alike and how they are different.
Students explore experimental probability through repeated simulations. They find the corresponding
theoretical probabilities by computing areas of the regions on the dartboard and then dividing these
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areas by the area of the entire dartboard. When computing these theoretical probabilities, students
have an opportunity to apply the formula for the area of a circle, and they learn about an annulus and
its area. They also engage in proportional reasoning to compute the probabilities of landing in the
various regions once they have found the circular and annular areas for the dartboard game.

As this activity demonstrates, technology can enhance student engagement significantly and can
provide immediate feedback for students to test and refine their conjectures. This (admittedly
contrived) experiment would be impossible to do physically. (In real life, we sometimes miss the
dartboard and do not throw randomly; we aim to earn points.) The Desmos simulations allow students
to generate 1000 trials instantly, to provide direct feedback to students.

As noted earlier, our goal here is not to model a real-world situation, but rather to use the realistic
and inviting dartboard context to develop student understanding. We believe that the dartboard
game will deepen student understanding of experimental probability, theoretical probabilities, and the
relationship between these two. The activity connects modeling, geometric probability, the concept of
randomness, and proportional reasoning. Technology is used strategically to build and support these
connections. The activity offers opportunities for class discussions to help students “hit the target” on
critical concepts of probability.
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