
Ohio Journal of School Mathematics, Issue 101, Fall 2025

Visual Reasoning in Summation: Area-based
Approaches to Arithmetic and Geometric

Progressions
Md Sadikur Rahman

Khalisani Mahavidyalaya, Hooghly, West Bengal, India

Abstract
This classroom note presents two unified, visually motivated derivations for the sums
of arithmetic and geometric progressions. Instead of relying solely on algebraic
manipulations, each derivation emerges naturally from the areas of bounded regions under
simple curves. These area-based proofs offer a pedagogically engaging approach that
bridges algebraic reasoning and geometric intuition, helping students visualize classical
summation results through the lens of calculus and coordinate geometry.
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1 Introduction

Arithmetic and geometric progressions are fundamental ideas in mathematics that appear in many
areas such as algebra, calculus, and real-life applications. Although their algebraic formulas are well
known, students often find it difficult to visualize why these results hold. Presenting these series
through geometric or area-based reasoning allows learners to connect symbolic formulas with visual
understanding.

This approach follows the educational vision of Courant and Robbins (1965), who emphasized the unity
between geometry and algebra, and Pólya (1954), who highlighted the role of plausible and visual
reasoning in mathematical discovery. In modern calculus learning, Stewart (2015) also encouraged
the use of graphical methods to explain accumulation and summation intuitively. More recently,
Chakraborty (2023) provided an elegant integral-based interpretation for the geometric series, inspiring
further exploration of such visual proofs.

In this note, two classical results—the sums of arithmetic and geometric progressions—are revisited
using area-based visualizations. These simple geometric constructions not only offer an alternative
proof but also serve as effective tools for classroom teaching, helping students see the natural
connection between algebraic formulas and geometric reasoning.

2 A Geometric View of Arithmetic Progression

This section offers an elegant geometric intuition: the sum of the sequence equals the area under a
linear function, visually seen as stacking trapezoids with linearly increasing heights.

Proposition 1. If 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛−1 are in arithmetic progression, then the sum of these numbers is given
by

𝑆𝑛 = 𝑎0 + 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛−1 =
𝑛
2
(2𝑎 + (𝑛 − 1)𝑑),

where 𝑎𝑖 = 𝑎 + 𝑖𝑑, 𝑖 = 0, 1, 2, … , 𝑛 − 1.
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Proof. Consider the straight line 𝑦 = 𝑑𝑥 +𝑎. The ordinates at 𝑥 = 0, 1, 2, … , 𝑛 represent the terms of the
arithmetic progression. The area bounded by this line, the 𝑥-axis, and these ordinates can be divided
into a series of trapezoids, each corresponding to a term in the sequence.

Figure 1
The areas of the trapezoids bounded by 𝑦 = 𝑑𝑥 + 𝑎, 𝑥-axis and ordinates 𝑎𝑖, 𝑖 = 1, 2, 3, … , 𝑛
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From Figure 1, it is clear that

Area of 𝑂𝐴𝑛𝐵𝑛𝐵0 = Area of (𝑂𝐴1𝐵1𝐵0 + 𝐴1𝐴2𝐵2𝐵1 + ⋯ + 𝐴𝑛−1𝐴𝑛𝐵𝑛𝐵𝑛−1)

⟹ 1
2
(2𝑎 + 𝑛𝑑)𝑛 = 1

2
𝑛𝑑 + 2(𝑎0 + 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛−1)

⟹ 𝑆𝑛 =
𝑛
2
(2𝑎 + (𝑛 − 1)𝑑).

Corollary 1. In particular, if 𝑎 = 1 = 𝑑, then 1 + 2 + 3 + ⋯ + 𝑛 = 𝑛
2 (𝑛 + 1).

This visualization helps students see the arithmetic mean as a geometric average of successive heights.
In a classroom, drawing this figure on graph paper or dynamically projecting it using GeoGebra can
make the “equal spacing” of heights tangible, transforming an abstract summation into a measurable
geometric accumulation.

3 A Visual Derivation for Geometric Progression

Proposition 2. For 0 < 𝑟 < 1, the sum of the geometric series is given by

1 + 𝑟 + 𝑟2 + 𝑟3 + ⋯ = 1
1 − 𝑟

.

Proof. Let 𝑦 = 𝑟 𝑡. The curve lies below the line 𝑦 = 1 and approaches zero as 𝑡 → ∞.
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Figure 2
Geometric representations of the region bounded by 𝑦 = 𝑟 𝑡, 𝑡-axis and ordinates 𝑡 = 𝑖, 𝑖 = 1, 2, 3, … , 𝑛
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From Figure 2, the total area under this curve from 𝑡 = 0 to 𝑡 = 𝑛 can be expressed as the sum of
subareas between consecutive integers, giving us:

Area of the region 𝐴0𝐴𝑛𝐵𝑛𝐵0 = Area of the sub regions (𝐴0𝐴1𝐵1𝐵0 + 𝐴1𝐴2𝐵2𝐵1 + ⋯ + 𝐴𝑛−1𝐴𝑛𝐵𝑛𝐵𝑛−1)
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Since 0 < 𝑟 < 1, ln 𝑟 < 0, but the factor cancels on both sides of the equation:

⟹ (𝑟𝑛 − 1) = (𝑟 − 1)(1 + 𝑟 + 𝑟2 + 𝑟3 + ⋯ + 𝑟𝑛−1)

i.e., 1 + 𝑟 + 𝑟2 + 𝑟3 + ⋯ + 𝑟𝑛−1 = 1−𝑟𝑛
1−𝑟 .

Taking limit as 𝑛 → ∞, one gets

1 + 𝑟 + 𝑟2 + 𝑟3 + ⋯ = 1
1 − 𝑟

.

This completes the proof.

4 Classroom Consequences and Pedagogical Implementation

By linking the exponential decay 𝑦 = 𝑟 𝑡 with the decreasing rectangular subareas, students can visually
grasp the convergence in geometric series. This method effectively connects integral calculus with
discrete summation, reinforcing conceptual unity across mathematical domains. In classroom practice,
such visual proofs can be explored interactively:

• Students can compute areas numerically for small 𝑛 and compare with algebraic results.
• Teachers can encourage graphical experimentation to reveal patterns.
• Integrating digital tools allows for dynamic visualization of how areas grow or converge.

The area-based derivations presented in this note offer several advantages for classroom instruction:

Visual Understanding: Students can see the summation formulas emerge from geometric regions
rather than memorizing algebraic manipulations. This visual approach helps develop geometric
intuition and connects multiple mathematical concepts (algebra, geometry, and calculus).

Integration of Concepts: These proofs naturally bridge discrete summation with continuous area,
showing how integral calculus provides a unifying framework for understanding series. The transition
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from Riemann sums to definite integrals becomes more concrete when students see rectangular and
trapezoidal approximations in action.

Dynamic Exploration: Teachers can encourage graphical experimentation using tools like GeoGebra
or Desmos. Students can manipulate parameters (𝑎, 𝑑, 𝑟, 𝑛) and observe how the geometric regions
change, reinforcing the connection between algebraic expressions and visual representations.

Computational Verification: After deriving the formulas geometrically, students can verify them
numerically by computing both the sum term-by-term and using the closed-form formula. This dual
approach strengthens both conceptual understanding and computational skills.

Extension Opportunities: These visual methods can be extended to other series and sequences.
For example, students might explore quadratic progressions using parabolic regions, or investigate
alternating series using signed areas.

By presenting classical results through fresh geometric perspectives, educators can transform routine
formula memorization into meaningful mathematical discovery, following the pedagogical philosophy
advocated by Pólya and modern reform movements in mathematics education.

5 Conclusion

This classroom note has demonstrated how the classical formulas for arithmetic and geometric
progressions can be derived through area-based geometric reasoning. By visualizing these sums as
regions bounded by simple curves—a line for arithmetic progressions and an exponential function for
geometric progressions—students gain deeper insight into why these formulas work.

Rather than treating summation formulas as isolated algebraic facts, we see them emerge naturally
from measurable geometric quantities. This perspective not only makes the mathematics more
accessible but also reveals profound connections between discrete and continuous mathematics.

For classroom implementation, these visual derivations offer multiple entry points for student
engagement: graphical exploration, numerical verification, and conceptual understanding all reinforce
each other. By transforming abstract summation into concrete geometric accumulation, we provide
students with mental images that support long-term retention and flexible problem-solving.
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