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Abstract

We present a fully elementary method for evaluating the infinite series 𝑆𝑘 = ∑∞
𝑛=1

𝑛𝑘
2𝑛 ,

where 𝑘 is a fixed natural number. The method relies only on repeated scaling,
term-by-term subtraction, and the systematic use of finite differences. No tools from
calculus, generating functions, or special functions are required. Starting from explicit
computations for 𝑘 = 1, 2, 3, 4, we show how a stable pattern emerges and how this
pattern can be described and proved using a difference matrix. Finally, we present an
interesting combinatorial identity.
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1 The Starting Point: A Simple but Powerful Idea

We begin with the series

𝑆𝑘 =
1𝑘

2
+ 2𝑘

4
+ 3𝑘

8
+ 4𝑘

16
+ ⋯

The key idea is extremely simple: Multiply the entire series by 1
2 , do not simplify any of the fractions,

then subtract the result from the original series term by term. This idea already works perfectly for
𝑘 = 1.

1.1 Example

In case 𝑘 = 1 we have:
𝑆1 =

1
2
+ 2
4
+ 3
8
+ 4
16

+ ⋯

Multiplying by 1
2 :

1
2
𝑆1 =

1
4
+ 2
8
+ 3
16

+ 4
32

+ ⋯

Now subtract column by column:

𝑆1 −
1
2
𝑆1 = (1

2
− 0) + (2

4
− 1
4
) + (3

8
− 2
8
) + ⋯

This gives
1
2
𝑆1 =

1
2
+ 1
4
+ 1
8
+ ⋯ = 1

and therefore 𝑆1 = 2.
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1.2 Why Higher Powers Are Not Automatic

For 𝑘 ≥ 2, the same idea works, but it must be carried out carefully and repeatedly. One cannot be
expected to guess which fractions to subtract; therefore, we explicitly write out every step.

We now explain this process in detail for 𝑘 = 2, 3, 4. These examples are essential for understanding
the general method.

1.2.1 The Case 𝑘 = 2: Writing Everything Explicitly

𝑆2 =
1
2
+ 4
4
+ 9
8
+ 16
16

+ 25
32

+ ⋯

Multiplying by 1
2 :

1
2
𝑆2 =

1
4
+ 4
8
+ 9
16

+ 16
32

+ ⋯

Subtract term by term:

𝑆2 −
1
2
𝑆2 = (1

2
− 0) + (4

4
− 1
4
) + (9

8
− 4
8
) + ⋯

This produces
1
2
𝑆2 =

1
2
+ 3
4
+ 5
8
+ 7
16

+ ⋯

Repeating the process once more:

1
4
𝑆2 =

1
4
+ 3
8
+ 5
16

+ 7
32

+ ⋯

Subtracting again:
1
2
𝑆2 −

1
4
𝑆2 = (1

2
− 0) + (3

4
− 1
4
) + (5

8
− 3
8
) + ⋯

Thus
1
4
𝑆2 =

1
2
+ 1
2
+ 1
4
+ 1
8
+ ⋯ = 1

2
+ 1

and therefore 𝑆2 = 6.

1.2.2 The Case 𝑘 = 3

Here three subtractions are needed.

𝑆3 =
1
2
+ 8
4
+ 27

8
+ 64
16

+ ⋯

We now form the four series
𝑆3,

1
2
𝑆3,

1
4
𝑆3,

1
8
𝑆3

and subtract each one from the previous one, always term by term. After the third subtraction, we
obtain

1
8
𝑆3 =

1
2
+ 5
4
+ 6
8
+ 6
16

+ 6
32

+ ⋯

From this point onward, all numerators are equal to 6, while the denominators continue to double. The
infinite tail is therefore a geometric series. Carrying out the arithmetic gives

𝑆3 = 26.
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1.2.3 The Case 𝑘 = 4: Seeing the Pattern Clearly

𝑆4 =
1
2
+ 16

4
+ 81

8
+ 256

16
+ ⋯

Repeating the subtraction process four times leads to

1
16

𝑆4 =
1
2
+ 12

4
+ 23

8
+ 24
16

+ 24
32

+ ⋯

The numerators form the sequence
1, 12, 23, 24, 24, 24, …

From this point onward, the numerators are constant and the denominators double. As you can see,
the sequences of numbers that appear in the numerators of 1

2𝑘 𝑆𝑘 −
1

2𝑘+1 𝑆𝑘 exhibit a similar behavior.
Now we focus on the sequence of numbers that appear in the numerators.

2 The Difference Matrix and Its Powers

To explain the origin of these numerators, we introduce the difference matrix Δ. Acting on an infinite
column vector (𝑎1, 𝑎2, 𝑎3, … )𝑇, the matrix Δ is given by

Δ =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0 ⋯
−1 1 0 0 ⋯
0 −1 1 0 ⋯
0 0 −1 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

.

Thus, multiplication by Δ produces the first forward differences.

Powers of the Difference Matrix

By direct matrix multiplication one obtains

Δ2 =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0 ⋯
−2 1 0 0 ⋯
1 −2 1 0 ⋯
0 1 −2 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

,

Δ3 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 ⋯
−3 1 0 0 ⋯
3 −3 1 0 ⋯
−1 3 −3 1 ⋯
0 1 −3 3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,
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and

Δ4 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 ⋯
−4 1 0 0 ⋯
6 −4 1 0 ⋯
−4 6 −4 1 ⋯
1 −4 6 −4 ⋯
0 1 −4 6 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In the general case, we have Δ𝑘 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(𝑘0) 0 0 0 0 0 0 0 ⋯
−(𝑘1) (𝑘0) 0 0 0 0 0 0 ⋯
(𝑘2) −(𝑘1) (𝑘0) 0 0 0 0 0 ⋯
−(𝑘3) (𝑘2) −(𝑘1) (𝑘0) 0 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯

(−1)𝑘(𝑘𝑘) (−1)𝑘−1( 𝑘
𝑘−1) ⋮ ⋮ −(𝑘1) (𝑘0) 0 0 ⋯

0 (−1)𝑘(𝑘𝑘) (−1)𝑘−1( 𝑘
𝑘−1) ⋮ ⋮ −(𝑘1) (𝑘0) 0 ⋯

0 0 (−1)𝑘(𝑘𝑘) (−1)𝑘−1( 𝑘
𝑘−1) ⋮ ⋮ −(𝑘1) (𝑘0) ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that the numbers appearing here evoke Pascal’s triangle.

2.1 Action on Power Sequences

Applying these matrices to the column vector (𝑛𝑘) = (1𝑘, 2𝑘, 3𝑘, … )𝑇 yields exactly the finite-difference
sequences. For example,

Δ4(𝑛4) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 ⋯
−4 1 0 0 ⋯
6 −4 1 0 ⋯
−4 6 −4 1 ⋯
1 −4 6 −4 ⋯
0 1 −4 6 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
16
81
256
625
1296
⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 1, 12, 23, 24, 24, 24, …

In fact we have:
(𝑛4) ∶ 1, 16, 81, 256, 625, …

Δ(𝑛4) ∶ 1, 15, 65, 175, 369, …
Δ2(𝑛4) ∶ 1, 14, 50, 110, 194, …
Δ3(𝑛4) ∶ 1, 13, 36, 60, 84, …
Δ4(𝑛4) ∶ 1, 12, 23, 24, 24, 24, …

The sequence becomes constant and equal to 4! = 4 × 3 × 2 × 1. This phenomenon holds in general: for
every 𝑘, the sequence Δ𝑘(𝑛𝑘) stabilizes at the value 𝑘!.

3 Derivation of the General Formula

We now explain how the general formula arises. Each subtraction step corresponds to multiplying the
series by 1

2 and subtracting term by term. After performing this operation exactly 𝑘 times, every term
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of the resulting series has the form
(Δ𝑘(𝑛𝑘))𝑛

2𝑛
,

where (Δ𝑘(𝑛𝑘))𝑛 is the 𝑛th term of the sequence Δ𝑘(𝑛𝑘). Thus we obtain

1
2𝑘
𝑆𝑘 =

∞
∑
𝑛=1

(Δ𝑘(𝑛𝑘))𝑛
2𝑛

.

From the theory of finite differences, we know that

(Δ𝑘(𝑛𝑘))𝑛 = 𝑘! for all 𝑛 ≥ 𝑘 + 1.

Therefore, the series splits naturally into two parts:

1
2𝑘
𝑆𝑘 =

𝑘
∑
𝑛=1

(Δ𝑘(𝑛𝑘))𝑛
2𝑛

+
∞
∑

𝑛=𝑘+1

𝑘!
2𝑛
.

The second sum is a geometric series and can be evaluated explicitly:

∞
∑

𝑛=𝑘+1

𝑘!
2𝑛

= 𝑘!
2𝑘
.

Multiplying both sides by 2𝑘, we finally obtain

𝑆𝑘 = 2𝑘
𝑘
∑
𝑛=1

(Δ𝑘(𝑛𝑘))𝑛
2𝑛

+ 𝑘! (1)

Every term in this formula has been explicitly constructed, and no hidden steps remain.

3.1 Worked Examples

3.1.1 Example 1: 𝑘 = 2

Δ2(𝑛2) = 1, 2, 2, 2, …

𝑆2 = 4 (1
2
+ 2
4
) + 2 = 6.

3.1.2 Example 2: 𝑘 = 3

Δ3(𝑛3) = 1, 5, 6, 6, 6, …

𝑆3 = 8 (1
2
+ 5
4
+ 6
8
) + 6 = 26.

3.1.3 Example 3: 𝑘 = 4

Δ4(𝑛4) = 1, 12, 23, 24, 24, …

𝑆4 = 16 (1
2
+ 12

4
+ 23

8
+ 24
16

) + 24 = 150.

Ohio Journal of School Mathematics, Issue 102, Spring 2026 79



Imaninezhad

4 An Interesting Combinatorial Identity

Since the sequence of numbers in the numerators becomes stable and constant beyond a certain point,
we can derive a combinatorial identity of the following form. (Δ𝑘(𝑛𝑘))𝑇 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(𝑘0)1
𝑘

(𝑘0)2
𝑘 − (𝑘1)1

𝑘

(𝑘0)3
𝑘 − (𝑘1)2

𝑘 + (𝑘2)1
𝑘

(𝑘0)4
𝑘 − (𝑘1)3

𝑘 − (𝑘2)2
𝑘 + (𝑘3)1

𝑘

⋮
(𝑘0)𝑘

𝑘 − (𝑘1)(𝑘 − 1)𝑘 + (𝑘2)(𝑘 − 2)𝑘 − (𝑘3)(𝑘 − 3)𝑘 + ⋯ + (−1)𝑘−1( 𝑘
𝑘−1)(𝑘 − (𝑘 − 1))𝑘

(𝑘0)(𝑘 + 1)𝑘 − (𝑘1)(𝑘)
𝑘 + (𝑘2)(𝑘 − 1)𝑘 − (𝑘3)(𝑘 − 2)𝑘 + ⋯ + (−1)𝑘−1( 𝑘

𝑘−1)2
𝑘 + (−1)𝑘(𝑘𝑘)1

𝑘

(𝑘0)(𝑘 + 2)𝑘 − (𝑘1)(𝑘 + 1)𝑘 + (𝑘2)(𝑘)
𝑘 − (𝑘3)(𝑘 − 1)𝑘 + ⋯ + (−1)𝑘−1( 𝑘

𝑘−1)3
𝑘 + (−1)𝑘(𝑘𝑘)2

𝑘

⋮
(𝑘0)(𝑘 + 𝑚)𝑘 − (𝑘1)(𝑘 + 𝑚 − 1)𝑘 + (𝑘2)(𝑘 + 𝑚 − 2)𝑘 + ⋯ + (−1)𝑘−1( 𝑘

𝑘−1)(𝑚 + 1)𝑘

⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Now, since from the 𝑘th row onward all the values are constant and equal to 𝑘!, we have:

𝑘
∑
𝑖=0

(−1)𝑖(
𝑘
𝑖
)(𝑘 + 𝑚 − 𝑖)𝑘 =

𝑘
∑
𝑖=0

(−1)𝑖(
𝑘
𝑖
)(𝑘 − 𝑖)𝑘 = 𝑘! (2)

4.1 Example

As a concrete illustration, consider the cases 𝑘 = 3, 5. A direct computation shows that

3
∑
𝑖=0

(−1)𝑖(
3
𝑖
)(9 − 𝑖)3 =

3
∑
𝑖=0

(−1)𝑖(
3
𝑖
)(6 − 𝑖)3 = 3!.

Similarly, we obtain
5
∑
𝑖=0

(−1)𝑖(
5
𝑖
)(15 − 𝑖)5 =

5
∑
𝑖=0

(−1)𝑖(
5
𝑖
)(10 − 𝑖)5 = 5!.

These calculations demonstrate that the value of the sum does not depend on the parameter 𝑚.

5 Conclusion

By insisting on explicit term-by-term subtraction and by carefully tracking numerators and
denominators, we obtain a complete and elementary evaluation of the series ∑𝑛𝑘/2𝑛. The
difference-matrix viewpoint explains why the computation always terminates after 𝑘 steps and
why factorials naturally appear. The method provides a concrete bridge between arithmetic, finite
differences, and infinite series.
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