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Abstract: Use of multiple methods for proof problems in geometry has great potential to expand reasoning
and thinking skills. Discovering or understanding different solutions may develop and increase the
enjoyment found in problem solving and render mathematics a creative enterprise. Six proof problems
from geometry are presented with hints for multiple methods of proof.
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1 Introduction

1.1 The value of multiple solutions in mathematics

One way to enhance the understanding of mathematical concepts and principles is to find a
variety of solution methods for a single problem. In the same way that we might get a better
perception of an object by using two senses, we might get a better understanding of a problem

by using two proofs, which may give us further understanding or allow us to look at the problem
from a different perspective (Polya, 1973). Minsky said that “You don’t understand anything until
you learn it more than one way” (quoted by Herold, 2005, p. 101). Forging connections between
different areas of mathematics and showing multiple paths to the solution of a problem is a key part
of developing of mathematical reasoning (Polya, 1973; Schoenfeld, 1985). Teaching standards in
several countries recommend that students be exposed to multiple procedures and encouraged to
compare methods, in order to develop flexibility in problem solving (Rittle-Johnson, Star, & Durkin,
2012). Furthermore, if students see mathematics problems as having a single solution method, they
will see mathematics as a rigid discipline - not as a creative enterprise (Rigelman, 2013).

1.2 Plane geometry - Integration of fields and methods of solution

Plane geometry is among the most astounding branches of mathematics, due to the multitude of
solution methods that exist. Indeed, there are hundreds of different proofs of the Pythagorean
Theorem (Loomis, 1968). Use of auxiliary constructions can offer different methods of solution for
the same task, and knowledge of advanced theorems gives rise to short and direct proofs. When
students have multiple methods for proving and understanding proof exercises in geometry, they
develop confidence, interest, ability, and flexibility in problem solving (Jiang & O’Brien, 2012).
With this in mind, we showcase six proof exercises from plane geometry. For each problem we
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provide questions and hints to guide students to find multiple methods of proof. Some methods
are standard, and others are unusual or very short and, perhaps, beautiful. The last exercise is
more difficult. Our hope is to provide a set of examples with a wide range of proofs to encourage
creativity, wonder and joy in the geometry classroom. An individual, small group or whole class
project might be to find as many proofs as possible for each statement, encouraging novel proofs
that are not indicated by guided questions. This would increase the joyful possibility that students
might find a proof that was not previously considered by the teacher. Complete demonstrations can
be found in Part 2, proofs at http://www.math.udel.edu/~alfinio/mpp2.pdf

Some of the approaches use advanced concepts that the students may not be aware of when
they could first approach the problem. The teacher could either wait to present the problem until
the multiple approaches could be understood, or introduce the problem early and then come
back when the advanced results have been established. This would need some forethought in
planning the course and would allow opportunity for review. The teacher may also want to do
some combination of the above.

2 Examples of proof problems with multiple solutions

2.1 Problem 1

Given a right triangle ABC, m∠B = 90◦, m∠C = 30◦ and a point D on BC which divides BC so
that CD = 2BD. Denote BD by x and DC by 2x (see Figure 1). Prove that AD bisects ∠BAC.

Fig. 1: Trisecting a leg.

2.1.1 Hints - method 1A

In a 30◦−60◦−90◦ right triangle the length of the hypotenuse is twice the length of the side opposite
the 30◦ angle, i.e., AC = 2y. Apply the Pythagorean theorem to4ABC to obtain y in terms of x,
and again to to compute z in terms of x. What can you say about ∠BAD?

2.1.2 Hints - method 1B

Construct perpendicular to the hypotenuse (dotted line in Figure 1). In the 30◦ − 60◦ − 90◦ triangle
EDC, what can you say about DE compared to DC? Show triangles ABD and CED are congruent.

2.1.3 Hints - method 1C

The angle bisector divides the opposite side in the same ratio as the sides that form the angle (see
Problem 4). Consider the ratios AC

AB and CD
BD , and apply the converse of the angle bisector theorem.
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2.1.4 Hints - method 1D

A 30◦ − 60◦ − 90◦ triangle is half of an equilateral triangle. What can you say about the ratio of
segments of intersected medians in a triangle? In an equilateral triangle, how are angle bisectors
and medians related?

2.2 Problem 2

Given the plane figure with AB = AC = AD as shown in Figure 2. Prove m∠DBC = 1
2∠CAD.

Fig. 2: Three isosceles triangles.

2.2.1 Hints - method 2A

Triangles ABC, CAD, and ABD are isosceles triangles; calculate the measures m∠ADC, m∠ACB,
and m∠ABD in terms of α and γ. Express m∠DBC in terms of m∠ABC and m∠ABD.

2.2.2 Hints - method 2B

Construct a circle with center A passing through points B, C, and D. Use the relation of inscribed
and central angles subtending the same arc.

2.3 Problem 3

Given triangle ABC; AD is a bisector of the angle ∠BAC, and AB > AC. Prove BD > DC.

2.3.1 Hints - method 3A

See Figure 3. From AB > AC it follows that γ > β. Add a point E on AB such that AE = AC.
Show that4ADC ∼= 4ADE, ∠ADE ∼= ∠ADC, ∠AED ∼= ∠ACD, and DE ∼= DC. We denote the
measure of the first pair of angles by ε and observe that m∠AED = m∠ACD = γ. Denote m∠BED
by δ. Show that ε > β and δ > ε, and therefore δ > β. Relate the size of these angles in triangle BDE
to the lengths BD and ED of corresponding opposite segments.

2.3.2 Hint - method 3B

Use the fact that AB
AC = BD

DC (because AD is an angle bisector), and AB > AC.
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Fig. 3: Auxiliary triangle.

2.4 Problem 4 (Different proofs of the Angle Bisector Theorem)

Given4ABC and a point D on AC such that BD bisects ∠ABC, prove that BD divides AC, such
that AD

DC = AB
BC , i.e., prove that an angle bisector in a triangle divides the side it intersects into two

segments such that the ratio of the lengths of the segments is equal to the ratio between the lengths
of the enclosed angle. We denote the bisected angle by 2β.

2.4.1 Hints - method 4A

Through vertex A draw a line parallel to BC. Through C draw a line parallel to angle bisector BD
as shown in Figure 4. Show that triangle ABE is isosceles. Apply Thales’ theorem to lines AC and
AF , intersected by parallel lines DE and CF , to obtain AD

DC = AE
EF . Show that EF = BC (because

BEFC is a parallelogram). Make two substitutions into the equality of ratios to obtain AD
DC = AB

BC .

Fig. 4: Auxiliary parallel lines.

2.4.2 Hints - method 4B

Let E be the point where angle bisector BD intersects the circumcircle of4ABC (Figure 5). Show
that m∠ACE = m∠ABE = m∠CBE = m∠CAE = β and that4AEC is an isosceles triangle with
AE = CE (denote this length by t). Show that4BDC ∼ 4ADE and therefore BC

t = DC
DE =⇒ t =

BC·DE
DC . Similarly show that t = AB·DE

AD and AB·DE
AD = BC·DE

DC .
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Fig. 5: Angle bisector and circumcircle.

2.4.3 Hints - method 4C

The ratio of the areas of two triangles with the same height is equal to the ratio of their bases. Using
Figure 6, compare the ratio area(4ABD)

area(4ADC) with the ratio of segment lengths BD and DC (use in the
area formula the height of the triangle and segmentsBD andDC), and with the ratio of side lengths
AB and AC (use in the formula the dotted lines as height, and sides AB and AC) (Figure 6).

Fig. 6: Equal heights.

2.5 Problem 5

ABCD is a parallelogram. The points E and F are the midpoints of the sides AD and DC,
respectively. We connect them with vertex B. The lines

←→
BE and

←→
BF intersect the diagonal AC at

the points G and H , respectively. Prove that AG = GH = HC (Figure 7).

Fig. 7: Trisecting the diagonal.
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2.5.1 Hints - method 5A

Draw the diagonal BD. In triangle ABD consider the medians BE and AI to see that the segments
have the relative lengths indicated in Figure 8 (y and 2y).

Fig. 8: Two auxiliary triangles.

Consider the medians BF and CI in triangle CBD. Use the fact that the diagonals in a parallelo-
gram bisect each other to show that x = y.

2.5.2 Hints - method 5B

Connect the points D and G and extend the line to intersect side AB at point J (Figure 9). Show
that J is the midpoint of side AB. Show that DJBF is a parallelogram. Use the relation between
AJ and JB to show AG = GH . Similarly show that GH = HC.

Fig. 9: Another trisection.

2.5.3 Hints - method 5C

From vertex C draw a line parallel to BF , which intersects the continuation of the side AB at point
K (Figure 10). The quadrilateral FCKB is a parallelogram. Hence: AJ = JB = BK, because
GJ ‖ GH ‖ HC, and from the proven identity, AJ = JB = BK, as well as from Thales’ theorem
for triangle ACK we have that AG = GH = HC.

Fig. 10: Auxiliary parallel line.
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2.6 Problem 6

Square ABCD has side length a. E is a point on side between D and C. Through vertex A draw a
straight line that intersects the side at point E. Through vertex A draw the bisector of angle EAB
which intersects the side BC at point F . Prove that x+ y = z (BF +DE = AE) (Figure 11).

Fig. 11: x+ y = z.

2.6.1 Hints - method 6A

From point F drop a perpendicular FG to the segment AE. Why is BF = FG = x? Calculate
the area of the square ABCD from the areas of the four triangles ABF , FCE, EFA, and ADE.
Simplify to obtain an expression of a2 in terms of x, y, and z. Use the Pythagorean theorem in
triangle ADE to obtain a2 in terms of z and y.

2.6.2 Hints - method 6B

From point E drop a perpendicular EN to the side AB (see Figure 12). Show that z
y = EM

MN (1). Use
the fact that triangles AMN and AFB are similar to express MN in terms of x, y, and a. Express
EM = a−MN in terms of x, y and a. Substitute these expressions for EM and MN in proportion
(1) to express a2 in terms of x, y and z. Use the Pythagorean theorem in triangle ADE.

Fig. 12: Auxiliary parallel line.

2.6.3 Hints - method 6C

Rotate triangle ABF 90◦ around A so that side AB coincides with side AD (Figure 13). Show that
triangle F ′EA is isosceles.
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Fig. 13: Rotating a triangle.

2.6.4 Hints - method 6D

A(0, 0), B(a, 0), C(a, a), and D(0, a) are the coordinates of the vertices. Choose a point E(b, a)
(b < a) on the side DC. Find the equations of line l1 containing AB and line l2 containing AE in
general form (ax+ by + c = 0). For two straight lines with general equations a1x+ b1y + c1 = 0
and a2x+ b2y + c2 = 0 the equations of the angle bisectors are a1x+b1y+c1√

a12+b1
2

= ±a2x+b2y+c2√
a22+b2

2
. Obtain

the equation of the angle bisector of lines l1 and l2 that has positive slope to find the coordinates of
point F . Obtain the lengths of the segments BF , AE and DE and show that BF +DE = AE.

3 Final remarks

The tasks presented are a small part of a wide range of proof problems in geometry for which more
than one method of proof can be found. The range of solutions illustrates the role of creativity in
mathematics, and encourages and challenges one to find additional solutions, which are sometimes
surprising and unusual. These solutions provide skills, tools and methods of solution, and they
allow one to deal with difficult tasks, which contribute to the development of reasoning and which
cause much joy to the fans of mathematics.
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