Another Proof of the Pythagorean Theorem

Amarnath Murthy

Retired from Oil and Natural Gas Corporation Limited (ONGC), India

Let $\triangle ABC$ be any right triangle with an altitude dropped from the right angle to the hypotenuse.

Proof. The proof is a follows:

 $\triangle ACD, \triangle CBD, \text{ and } \triangle ABC \text{ are similar triangles.}$ $\frac{DE}{AC} = \frac{DF}{CB} = \frac{CD}{AB} = k \text{ (Altitudes of similar triangles are in the same ratio as the sides.)}$ $\Rightarrow DE = k(AC), DF = k(CB), \text{ and } CD = k(AB).$ (3) $\text{Area} \triangle ABC = \text{Area} \triangle ACD + \text{Area} \triangle CBD.$ $\frac{1}{2}(CD)(AB) = \frac{1}{2}(DE)(AC) + \frac{1}{2}(BC)(CB)$ $\Rightarrow \frac{1}{2}k(AB)(AB) = \frac{1}{2}k(AC)(AC) + \frac{1}{2}k(CB)(CB)$ (6) $AB^2 = AC^2 + CB^2$ \square

Amarnath Murthy retired as a Chief General Manager from ONGC , India's Leading Oil and Gas public sector company. He is the author of many articles and books. Mathematics has been a passion of his since childhood.