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Abstract: This article examines the steps to find out how many squares can be drawn within a 100 by 100 array of
points. Strategies of pattern analysis and organization are discussed, and the problem is then extended to include a
spatial awareness component. The writers solve these fascinating problems step-by-step and then explain how they
could be implemented in the high school Geometry classroom.
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Introduction

Have you ever encountered an instance where you were asked to determine how many triangles
appear to be in an array of multiple triangles? Sometimes these instances occur online as a brainteaser
or even in your high school geometry classroom. The answer to these types of problems can be quite
surprising. Most students or individuals count the obvious triangles but don’t consider all possibilities.
Let’s consider the array of triangles in Figure 1.

Figure 1: How many triangles do you see?

Many see 16 triangles. But the answer is more complex than that. For starters, yes there are 16 small
individual triangles (unit triangles) that make up one large triangle (16 + 1 = 17 triangles). Next, we
want to look beyond the individual unit triangles and determine what other size triangle we can make
(3 unit triangles on the base with one unit triangle on top, 5 unit triangles on the base with 3 unit
triangles in the middle and 1 unit triangle on top). All of the possible sizes of triangles and the number
of triangles created from that size are found in Table 1.

Ohio Journal of School Mathematics 94 Page 31



Table 1: Type and number of triangles within Figure 1.

If we sum all of the possible triangles, we get a surprising answer of 27 unique triangles that are made
from the array of 16-unit triangles. This answer is much different than what most individuals would
have predicted that answer to be.

This brain teaser problem is a great discovery question for high school students enrolled in any
geometry class. The Ohio standard G.MG.3 (2017, p. 83) wants students to apply geometric methods
to solve design problems. This problem does just that, students can solve this problem by creating
organized lists and tables to discover patterns and generalize their findings on a broader scope. Fur-
thermore, it requires spatial problem-solving, which is frequently underemphasized in the high school
mathematics curriculum. The question is, can we apply these problem-solving ideas to other geometric
shapes?

The Square Problem

The answer is yes! Now that we understand triangles within triangles, let’s apply a similar pattern
of thinking to understand squares within squares. Suppose you have a 100 by 100 array of points
arranged evenly in a square, containing a total of 10, 000 points. How many total squares (T ) can be
drawn in that array? This total includes every unique square of each dimension (S), which is identified
in terms of its area (A). Note that this problem was originally presented by Frederick Stevenson in his
essay “Exploratory Problems in Mathematics” (1997, p.87–88). Figure 2 illustrates what a 3 × 3 array
looks like as well as each size square that can be drawn within it.

Figure 2: Square sizes in a 3 × 3 array.

Note that while we only drew 3 total squares in this array, there are actually a total (T ) of 6 unique
squares that exist in the array because there are 4 1 × 1 unit squares. This information is formalized in
Table 2.
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Table 2: Number of squares in a 3 × 3 array.

If you have already tried to think through this problem on your own, you might be wondering how we
found the square of area 2 in this array. Like the triangle problem from the introduction, this problem
is more complicated than it seems. Not only do we have to count the squares whose sides are vertical
and horizontal, but we also have to count what we call “diagonal squares.” Square JLPQ in Figure 2 is
the only diagonal square in a 3 × 3 array and its area can easily be shown to be 2 under the assumption
that the distance between 2 points is 1 unit. Figure 3 shows another possible diagonal square in a 4 × 4
array with an area of 5.

Figure 3: Oblique squares in a 4 × 4 array.

Exploration of the Square Problem

Before we can formulate the tables for each size array, like Table 2, we must explore each case by
drawing squares. Using Square Dot Paper in Geogebra, we were able to draw each array and record
the number of squares for arrays of size 2 × 2 through 7 × 7. First, consider the 2 × 2 case. Figure 4
shows that only 1 square can be formed by this set of 4 points.

Figure 4: Square in a 2 × 2 array.

We have already examined the 3 × 3 case, so let’s now consider the case of the 4 × 4 array. Figure
5 shows the 5 different square sizes that can be formed in this array. It is important to note that the
number of square sizes increases as the size of the array increases.
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Figure 5: Square sizes in a 4 × 4 array.

We continued this square construction process through the 7 × 7 array and organized our findings in
Table 3.

Table 3: Number of squares in arrays of various dimensions.
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Finding the Formula

Now let’s consolidate the information in Table 3 by recording the total number of unique squares (T )
per array size. Table 4 displays this information.

Table 4: First through fourth order differences in total number of squares (T ) per array.

Unfortunately, there is no clear pattern to discern just by examining the first three columns of Table
4, as we would hope. We decided to employ the “Difference Method,” seen in the last four columns
to determine if our formula could be represented as a polynomial. The first difference represents the
difference in T values for consecutive rows of arrays. As you might guess, the second row represents
the difference in the first differences for consecutive rows, and the pattern continues for the third and
fourth differences. The method stops when all consecutive pairs of rows yield the same difference;
since our 4th difference is 2 between the 5 × 5 and 6 × 6 arrays and between the 6 × 6 and 7 × 7 arrays,
we know that the T formula we are searching for is quartic. In other words, our final formula should
be of the form,

T = AN4 + BN3 + CN2 + DN + E, with A, B, C, D, E ∈ R
Since we have 5 unknown variables in this formula, we need to create 5 equations to solve for them.
We will use the T and N values for the 2 × 2 through the 6 × 6 arrays to obtain the following system:

1 = A · 44 + B · 43 + C · 42 + D · 4 + E

6 = A · 94 + B · 93 + C · 92 + D · 9 + E

20 = A · 164 + B · 163 + C · 162 + D · 16 + E

50 = A · 254 + B · 253 + C · 252 + D · 25 + E

105 = A · 364 + B · 363 + C · 362 + D · 36 + E

With a little help from a powerful calculator, we can obtain the solution to this system and substitute
the values in to obtain the formula:

T = 1
12N4 − 1

12N2

Now, we can use this formula to solve our original problem. Recall that we have a 100 × 100 array, so
we substitute N = 100 into our formula to find that the total will be 8,332,500 squares.

T = 1
12 · 1004 − 1

12 · 1002 = 8, 332, 500

Extension: The Cube Problem

Suppose we extend this idea and have a 100 by 100 by 100 array of points arranged evenly in a cube,
containing a total of 1, 000, 000 points. How many total cubes of a particular size (C) can be drawn in
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this array? This total includes every unique cube of each dimension, which is identified in terms of
volume (V ). Note that this problem was also obtained from Stevenson’s “Exploratory Problems in
Mathematics” (1997, p.87–88). Table 5 illustrates what this means using a 3 × 3 × 3 array as an example.

Table 5: Number of cubes in a 3 × 3 × 3 array.

Therefore, in a 3 × 3 × 3 array, there are two distinct-sized cubes, 8 cubes with volume 1 and 1 cube
with volume 8 cubic units.

Before we begin exploring the cube problem, it is important to note that there will not be any diagonal
cubes like there were diagonal squares in the square problem. The reason for this is that the side length
of the cube would not be a whole number, thus not meeting all of the points in the array on the vertices
of the cube. Figure 6 shows a 4 × 4 array of points and how the height of the cube fails to meet a point.

Figure 6: A cube with side length
√

5.

Exploration of the Cube Problem

Similar to the exploration of the square problem, we can generate tables for different-sized arrays.
Before generating the tables, it would be beneficial to explore all cases by drawing the arrays on
isometric paper and recording the number of cubes.

First, consider the 2 × 2 × 2 array of points. Figure 7 shows that there is only one cube with a
volume equal to 1 cubic unit.

Figure 7: 2 × 2 × 2 array with 1 cube.
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Next we can explore a 3 × 3 × 3 array of points. In this array, there will be two distinct-sized cubes that
we can make. Figure 8 shows there will be 8 cubes with V = 1 and 1 cube with V = 8. Therefore an
array of 3 × 3 × 3 points has 9 total cubes.

Figure 8: 3 × 3 × 3 array with 9 cubes.

Finally, consider a 4 × 4 × 4 array of points. In this array, there will be three distinct-sized cubes that
we can make. Figure 9 shows there will be 27 cubes with V = 1, 8 cubes with V = 8, and 1 cube with
V = 27.

Figure 9: 4 × 4 × 4 array with 36 cubes.

Similarly to the square problem, we can generate tables for different arrays starting with 2 × 2 × 2 and
ending with 7 × 7 × 7.
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Table 6: Number of cubes in arrays of various dimensions.

Finding The Formula

Just as we found the formula to compute the number of total squares in an N × N array of points,
we can use the same method to derive a formula for calculating the total number of cubes (T ) in an
N × N × N array of points.
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Table 7: First through fourth order differences in total number of cubes (T ) per array.

Unlike the square problem, there is a noticeable pattern present in the first three columns. Specifically
in the third column labeled T (total number of cubes), each number is a square number. But the
square numbers are not consecutive square numbers; therefore, we need to discover other hidden
patterns. We used the “Difference Method” in the same manner as the square problem. We found the
first difference of the rows in T , then the second difference in the rows of the first differences, and so
on until we found a constant difference occurring in the fourth difference column. Once again, the
constant fourth difference informs us that the formula will once again be a quartic equation, so the
equation will be of the form,

T = AN4 + BN3 + CN2 + DN + E, with A, B, C, D, E ∈ R

We have 5 unknown variables in this formula, and we need to create 5 equations to solve for them. We
will use T and N values for the 2 × 2 × 2 through the 6 × 6 × 6 arrays to obtain the following system:

1 = A · 84 + B · 83 + C · 82 + D · 8 + E

9 = A · 274 + B · 273 + C · 272 + D · 27 + E

36 = A · 644 + B · 643 + C · 642 + D · 64 + E

100 = A · 1254 + B · 1253 + C · 1252 + D · 125 + E

225 = A · 2164 + B · 2163 + C · 2162 + D · 216 + E

Using a powerful calculator to solve for the 5 variables, we can obtain the solution to this system and
substitute the values in to obtain the formula:

T = 1
4N4 − 1

2N3 + 1
4N2

Finally, we can use this formula to solve the original cube problem. Recall that we wanted to know
how many cubes are in a 100 × 100 × 100 array of points. We can substitute N = 100 into the formula
to get a total of 24, 502, 500 cubes. Wow!!

T = 1
4 · 1004 − 1

2 · 1003 + 1
4 · 1002 = 24, 502, 500

Extend the Extension!

If you have used these tasks in your classroom and want to explore further, consider this extension
question:

How many different sizes of squares (i) can be drawn within different-sized arrays? What
about different-sized cubes?

Table 8 includes our preliminary work on the square portion of this problem to get you started.
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Table 8: Tracking i, the number of unique square sizes in the array.

Summary

The square and cube problem truly resonates as a rich discovery task for students. The combination of
creativity, visualizations, and organization enables students to solve higher-level thinking problems
such as the square and cube problems presented. The creative aspect of these problems requires
students to tap into their artistic sides and discover the possibilities visually. The visualization aspect
comes into play when students may need help conceptualizing larger arrays, tapping into their spatial
awareness. Finally, students must keep their work organized in some way in order to notice patterns
that will lead them to the solution.

These problems would be great discovery tasks to incorporate into a Geometry classroom. As you
see, the process of solving a discovery task can be challenging and likely requires multiple work days
to complete, but the final result is satisfying and worth the work. This problem truly brings out the
mathematicians in students. Students will feel accomplished discovering their very own formulas that
answer the initial problems.
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